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Abstract

In this paper, we develop the noninformative priors for the common 
scale parameter in the inverse gaussian distributions. We developed the 
first and second order matching priors. Next we revealed that the second 
order matching prior satisfies a HPD matching criterion. Also we showed 
that the second order matching prior matches alternative coverage 
probabilities up to the second order. It turns out that the one-at-a-time 
reference prior satisfies a second order matching criterion. Some 
simulation study is performed.

Keywords : Common Scale, Inverse Gaussian, Matching Prior, 
Reference Prior  

1. Introduction

Consider k  independent inverse gaussian populations with parameters µ i  and λ . 

Let Xij, j = 1, , ni  denote observations from the i th inverse gaussian population, 

i = 1, , k . Then the inverse gaussian distribution is given by,

f (xij ) =

√
λ
2π

x
−

3
2

ij  exp








−
λ (xij − µi )

2

2µ2
i xij

, xij > 0, i = 1, , k, j = 1, , ni,     (1)

where µi > 0  and λ > 0 . Because of the versatility and flexibility in modelling 

right-skewed data, the inverse gaussian distribution has potential useful 
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applications in a wide variety of fields such as biology, economics, reliability 

theory, life testing and social sciences as discussed in Chhikara and Folks (1978, 

1989) and Seshadri (1999). Tweedie (1957a, 1957b) established many important 

statistical properties of the inverse gaussian distribution and discussed the 

similarity between statistical methods based on the inverse gaussian distribution 

and those based on the normal theory.

The common scale parameter λ  is of interest.  This parameter λ  is shown in 

the analysis of reciprocals (Tweedie, 1957a; Fries and Bhattacharyya, 1983) and 

regression models (Whitmore, 1979).

The present paper focuses on noninformative priors for λ . We consider Bayesian 

priors such that the resulting credible intervals for λ  have coverage probabilities 

equivalent to their frequentist counterparts. Although this matching can be justified 

only asymptotically, our simulation results indicate that this is indeed achieved for 

small or moderate sample sizes as well.

This matching idea goes back to Welch and Peers (1963). Interest in such priors 

revived with the work of Stein (1985) and Tibshirani (1989). Among others, we 

may cite the work of DiCiccio and Stern (1994), Datta and Ghosh (1995a,b, 1996), 

Mukerjee and Ghosh (1997) and Mukerjee and Reid (1999).

On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo 

(1989,1992) extended Bernardo's (1979) reference prior approach, giving a general 

algorithm to derive a reference prior by splitting the parameters into several 

groups according to their order of inferential importance. This approach is very 

successful in various practical problems. Quite often reference priors satisfy the 

matching criterion described earlier.

The outline of the remaining sections is as follows. In Section 2, we develop 

first order and second order probability matching priors for λ . We revealed that 

the second order matching prior matches the alternative coverage probabilities up 

to the same order, and is a HPD matching prior up to the same order. Also we 

derive the reference priors for the parameters. It turns out that the one-at-a-time 

reference prior satisfies a second order matching criterion. We provide that the 

propriety of the posterior distribution for the reference priors as well as second 

order matching prior. In Section 4, simulated frequentist coverage probabilities 

under the proposed priors are given.

2. The Noninformative Priors

2.1 The Matching Priors

For a prior π, let θ1− α
1 (π;X)  denote the (1 − α )th percentile of the posterior 

distribution of θ1, that is,
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P π [θ1≤θ1− α
1 (π;X)│X] = 1 − α,                        (2)

where θ = (θ1, , θt)
T
 and θ1  is the parameter of interest. We want to find 

priors π  for which

P [θ1≤θ1−α
1 (π;X)│θ ] = 1 −α+ o (n− u).                   (3)

for some u , as n  goes to infinity. Priors π  satisfying (3) are called matching 

priors. If u = 1/2 , then π  is referred to as a first order matching prior, while if 

u = 1 , π  is referred to as a second order matching prior.

We now begin to find such matching priors π. The likelihood function of 

parameters (λ,µ1, ,µk )  for the model (1) is given by

L (λ,µ1, ,µk )∝λ
N
2  exp









−
λ
2 Σi = 1

k

Σ
j = 1

ni (xij − µi )
2

µ2
i xij

,               (4)

where N = n1 + + nk.  Based on (4), the Fisher information matrix is given by

I = Diag 






N
2
λ− 2, n1λµ

− 3
1 , , nkλµ

− 3
k                      (5)

From the above Fisher information matrix I , λ  is orthogonal to (µ1, ,µk )  in 

the sense of Cox and Reid(1987). Following Tibshirani(1989), the class of first 

order probability matching prior is characterized by

π(1)
m (λ,µ1, ,µk )∝λ− 1d (µ1, ,µk ),                     (6)

where d (µ1, ,µk ) > 0  is an arbitrary function differentiable in its arguments.

The class of prior given in (6) can be narrowed down to the second order 

probability matching priors as given in Mukerjee and Ghosh (1997). A second 

order probability matching prior is of the form (6), and also d  must satisfy an 

additional differential equation (cf (2.10) of Mukerjee and Ghosh (1997)), namely

1
6

d (µ1, ,µk )
∂
∂λ







I

−
3
2

11 L1,1,1 + Σ
v = 1

k
∂
∂µv







I

−
1
2

11 L11vI
vvd (µ1, ,µk ) = 0,      (7)

where
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L1,1,1 = E [(
∂ log L
∂λ

)3] =− Nλ− 3, L11v = E [
∂3 log L

∂λ2∂µv

] = 0,

where, v = 1, , k  and  I11 =
N
2
λ− 2

Then (7) simplifies to

−
N − 1/223/2

6
d (µ1, ,µk )

∂
∂λ

λ3 λ− 3 = 0.

Thus the resulting second order probability matching prior is

π(2)
m (λ,µ1, ,µk )∝λ− 1d (µ1, ,µk ).                     (8)

If π ( )  is second order matching for θ  then Bayesian credible sets of the 

form(−∞, θ1 − α(π;X)]  for θ  have correct frequentist coverage as well, with 
margin of error

o(n− 1). In this case, such Bayesian credible sets can also be interpreted as 
frequentist confidence sets. From the frequentist point of view, however, the 

probability for a confidence set to include an alternative value of the parameter of 

interest is as important as that of the true coverage. Such an alternative coverage 

probability indicates how selective a confidence set is. So Mukerjee and Reid 

(1999) studied that a prior satisfying (3) matches 

P [θ1 + (I 11/n)1/2≤θ1− α
1 (π;X)│θ ]  with the corresponding posterior probability, 

up to the same order and for each  and α , where the scalar  is free from n, θ  

and X . If a matching prior matches the alternative coverage probabilities then 

there is a stronger justification for calling it noninformative in so far as 

agreement with a frequentist is concerned. In general a second order matching 

prior may or may not match the alternative coverage probabilities up to the same 

order of approximation.

Under orthogonal parametrization, Mukerjee and Reid (1999) gives the simple 

differential equations that a second order probability matching prior matches 

alternative coverage probabilities up to the second order.

Since

    L111 = E [
∂3logL

∂λ3
] = Nλ− 3, L11j = E [

∂3logL

∂λ2∂µj

] = 0, j = 1, , k,

L1,11 = E [
∂logL
∂λ

∂2logL

∂λ2
] = 0, Lj,11 = E [

∂logL
∂µj

∂2logL

∂λ2
] = 0, j = 1, , k,
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and I11 =
N
2
λ− 2 , thus the differential equations ((3.18)-(3.20) of Mukerjee and 

Reid (1999)) are simplified to

 
∂
∂λ







I

−
3
2

11 L111 =
∂
∂λ









(
2
N

)3/2λ3 Nλ− 3 = 0,
∂
∂λ







I

−
3
2

11 L1,11 =
∂
∂λ







I

−
3
2

11 0 = 0,

Σ
j = 1

k
∂
∂µj







L11jI

jjI
−

1
2

11 d (µ1, , µk ) = Σ
j = 1

k
∂
∂µj







0 I jjI

−
1
2

11 d (µ1, , µk ) = 0,

and

Σ
j = 1

k
∂
∂µj







Lj,11I

jjI
−

1
2

11 d (µ1, , µk ) = Σ
j = 1

k
∂
∂µj







0 I jjI

−
1
2

11 d (µ1, , µk ) = 0.

Therefore the second order matching prior (8) matches the alternative coverage 

probabilities up to the second order.

There are alternative ways through which matching can be accomplished. One 

such approach (DiCiccio and Stern, 1994; Ghosh and Mukerjee, 1995) is matching 

through the HPD region. Specifically, if π̃  denotes the posterior distribution of θ1  

under a prior π, and kα≡ kα (π;X)  is such that

P π [π̃ (θ1│X)≥kα│X] = 1 − α + o (n − u),                 (9)

then the HPD region for θ1  with posterior coverage probability 1 −α+ o (n− u)  is 
given by

Hα (π;X) = θ1 : π̃ (θ1│X)≥kα .                         (10)

DiCicco and Stern (1994) and Ghosh and Murkerjee (1995) characterized priors π  

for which

P [θ1 Hα(π;X)│θ ] = 1 − α+ o (n − u),                    (11)

for all θ  and all α (0, 1 ) . They found necessary and sufficient conditions under 

which π  satisfies (11).

Recently, Datta, Ghosh and Mukerjee (2000) provided a theorem which 
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establishes the equivalence of second order matching priors and HPD matching 

priors within the class of first order matching priors. The equivalence condition is 

that I −3/2
11 L111  dose not depend on θ1. Since L111 = E [∂3 logL/∂λ3 ] = Nλ− 3

, thus 

I − 3/2
11 L111 = N−1/223/2

. So I −3/2
11 L111  does not depend on λ . Therefore the second 

order probability matching prior (8) is a HPD matching prior up to the same 

order.

2.2 The Reference Priors

Reference priors introduced by Bernardo (1979), and extended further by Berger 

and Bernardo (1992) have become very popular over the years for the development 

of noninformative priors. In this Section, we derive the reference priors for 

different groups of ordering of (λ,µ1, ,µk ) . Then due to the orthogonality of the 

parameters, following Datta and Ghosh (1995), choosing rectangular compacts for 

each λ,µ1, ,µk  when λ  is the parameter of interest, the reference priors are 

given as follows.

If λ  is the parameter of interest, then the reference prior distributions for 

different groups of ordering of (λ,µ1, ,µk )  are:

         Group ordering                       Reference prior

                  (λ,µ1, ,µk ) ,                        π1∝λ
−

2− k
2 µ

−
3
2

1 µ
−

3
2

k

      λ,µ1, ,µk , λ, (µ1, ,µk ) , (µ1, ,µk ),λ ,        π2∝λ− 1µ
−

3
2

1 µ
−

3
2

k .

Remark 1. In the above reference priors, the one-at-a-time reference prior 

satisfies a second order matching criterion. But Jeffreys' prior is not a second 

order matching prior.

In the above results (8), the second order probability matching priors are given 

by

π(2)
m (λ,µ1, ,µk )∝λ− 1d (µ1, ,µk ),

where d  is any smooth function of µ1, ,µk . However every function is not 

permissible in the construction of priors. For instance, we consider any function of 

the form(µ1 µk )
− a.   If a  is negative integer, then the posterior distribution of 

λ  is proper. But the condition of propriety in this form strongly depend on the a . 

Moreover there does not seem to be any improvement in the coverage probabilities 
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with this posterior distribution. So we consider a particular second order matching 

prior whered = µ− 3/2
1 µ− 3/2

k . Because this matching prior is the one-at-a-time 

reference prior. The matching prior is given by

π(2)
m (λ,µ1, ,µk ) = λ− 1µ

−
3
2

1 µ
−

3
2

k .                     (12)

Remark 2. We show that the prior (12) is joint probability matching when 

λ,   µ1, ,µk− 1  and µk  are of interest. Write θ = (λ,µ1, ,µk ) . Let t1 (θ ) = λ , 

t2 (θ ) = µ1, , tk (θ ) = µk − 1  and tk + 1 (θ ) = µk . Following the notation of Datta 

(1996), P (θ ) = Diag 1, 1, , 1 . Thus condition (7) of Datta (1996) is satisfied. 

Moreover the prior (12) is the unique solution to the equations of (2) of Datta 

(1996). Thus the prior (12) is joint probability matching prior for (λ,µ1, ,µk ) . 

So this matching prior can be used for the Bayesian inference in the analysis of 

reciprocals and regression models.

3. Implementation of the Bayesian Procedure

We investigate the propriety of posteriors for a general class of priors which 

include the Jeffreys' prior and the second order matching prior (12). We consider 

the class of priors

π(2)
m (λ,µ1, ,µk ) = λ− aµ− b

1 µ− b
k ,                     (13)

where |a|≥  0 and b> 0.  The following general theorem can be proved.

Theorem 1. The posterior distribution of (λ,µ1, ,µk )  under the general prior 

(13) is proper if N − 2a − kb + k + 2 > 0  and b> 1.

Proof.  Under the general prior (13), the joint posterior for λ,µ1, ,µk  given x  

is

π (λ, µ1, , µk│x)∝λ
N− 2a

2 µ− b
1 µ− b

k   exp








−
λ
2 Σi = 1

k

Σ
j = 1

ni (xij − µi )
2

µ2
i xij

.      (14)

Integrating with respect to λ , (µ1, ,µk )  has the posterior
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π (µ1, ,µk│x)∝µ− b
1 µ− b

k Σ
i = 1

k

Σ
j = 1

ni (xij − µi )
2

µ2
i xij

−
N− 2a + 2

2

≤x
N− 2a + 2

2
m ax µ− b

1 µ− b
k Σ

i = 1

k

Σ
j = 1

ni (xij − µi )
2

µ2
i

−
N− 2a + 2

2
,

    (15)

provided N− 2a + 2 > 0  and xm ax = m ax1≤i≤k,1≤j≤ni
xij . For (15), substituting 

ti = µ− 1
i ,  i = 1, , k,  then

π (t1, , tk│x)∝t b − 2
1 t b − 2

k [Σ
i = 1

k

Σ
j = 1

ni

(xijti − 1 )2]
−

N− 2a + 2
2

≤c1t
b − 2
1 t b − 2

k Π
i = 1

k

[Σ
j = 1

ni

(xijti − 1 )2]
−

N− 2a + 2
2k ,

where c1  is a constant. For ti (0, ti0 ], i = 1, , k , the integral 
0

∞
t b − 2
i

[Σ
j = 1

ni

(xijti − 1 )2]
−

N− 2a + 2
2k dti  is proper if b > 1 . Also, for ti (ti0,∞ ),  

i = 1, , k , 
0

∞
t b − 2
i [Σ

j = 1

ni

(xijti − 1 )2]
−

N − 2a + 2
2k dti  is proper if (N − 2a + 2 )/k

− b + 1> 0 , so that N − 2a − kb + k + 2 > 0 . This completes the proof. ⎕
Theorem 2. Under the general prior (13), the marginal posterior density of λ  is 

given by

π (λ│x)∝Π
i = 1

k 









Γ (
b − 1

2
) 1F1 [

b − 1
2

,
1
2

,
niλ

2xi

] +

√
2niλ

xi

Γ (
b
2

) 1F1 [
b
2

,
3
2

,
niλ

2xi

]

λ
−

N− 2a − bk + k
2  exp









−
λ
2

[Σ
i = 1

k

Σ
j = 1

ni

x − 1
ij ] ,

where xi = Σ
j = 1

ni

xij/ni,  i = 1, , k  and  1F1 [ , , ]  is Kummer confluent 

hypergeometric function.
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The normalizing constant for the marginal density of λ  requires a one 

dimensional integration. Therefore we can have the marginal posterior density of 

λ , and so we can  compute the marginal moment of λ . In Section 4, we 

investigate the frequentist coverage probabilities for the Jeffreys' prior and the 

one-at-a-time reference prior, respectively.

4. Numerical Studies and Discussion

We evaluate the frequentist coverage probability by investigating the credible 

interval of the marginal posteriors density of λ  under the noninformative prior π  

given in Section 3 for several configurations (λ,µ1, ,µk )  and (n1, , nk ) . That 

is to say, the frequentist coverage of a (1 − α )th  posterior quantile should be 

close to 1 − α . This is done numerically. Table 1 gives numerical values of the 

frequentist coverage probabilities of 0.05(0.95) posterior quantiles for the our prior. 

The computation of these numerical values is based on the following algorithm for 

any fixed true (λ,µ1, ,µk )  and any prespecified probability value α . Here α  is 

0.05(0.95). Let θπ1 (α│X)  be the         

Table 1: Frequentist Coverage Probabilities of 

         0.05 (0.95) Posterior Quantiles for λ  

   λ    n1 ,  n2 ,  n3 π1 π2

  0.5       3,  3,  3 
        3,  5,  5
        5,  5,  5
        5, 10, 10
       10, 10, 10

0.277(0.995)
0.199(0.992)
0.179(0.989)
0.130(0.979)
0.104(0.980)

0.074(0.973)
0.063(0.967)
0.065(0.962)
0.057(0.950)
0.044(0.955)

   1         3,  3,  3 
        3,  5,  5
        5,  5,  5
        5, 10, 10
       10, 10, 10

0.259(0.993)
0.185(0.990)
0.159(0.988)
0.113(0.977)
0.109(0.977)

0.059(0.968)
0.055(0.958)
0.048(0.958)
0.044(0.946)
0.046(0.946)

   5         3,  3,  3 
        3,  5,  5
        5,  5,  5
        5, 10, 10
       10, 10, 10

0.208(0.991)
0.170(0.984)
0.151(0.979)
0.124(0.979)
0.107(0.975)

0.040(0.947)
0.050(0.942)
0.047(0.943)
0.053(0.946)
0.048(0.947)

  10         3,  3,  3 
        3,  5,  5
        5,  5,  5
        5, 10, 10
       10, 10, 10

0.221(0.990)
0.169(0.987)
0.159(0.984)
0.126(0.979)
0.106(0.979)

0.041(0.943)
0.048(0.946)
0.051(0.948)
0.057(0.950)
0.051(0.954)
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posterior α-quantile of λ  given  x . That is to say, F (λπ (α│X)│X) = α , 

where F ( │X)  is the marginal posterior distribution of λ . Then the frequentist 

coverage probability of this one sided credible interval of λ  is

P(λ,µ1, ,µk)
(α;λ) = P(λ,µ1, ,µk)

(0 < λ≤λπ (α│X)).             (16)

The estimated P(λ,µ1, ,µk)
(α;λ )  when α = 0.05  (0.95 )  is shown in Table 1 for 

the k = 3  case.

In particular, for fixed (λ,µ1,µ2,µ3 ) , we take 5,000 independent random samples 

of X  from the model (1). In our simulation, we take (µ1,µ2,µ3 ) = (1,2,3 ).

For the cases presented in Table 1, we see that the one-at-a-time reference 

prior π2  matches the target coverage probability much more accurately than the 

Jeffreys' prior π1  for small values of n1 , n2  and n3 , and values of λ  . Note that 

the one-at-a-time reference prior satisfies a second order matching criterion but 

the Jeffreys' prior is not matching prior. Thus we recommend to use the 

one-at-a-time reference prior π2  in the sense of asymptotic frequentist coverage 

property.

In the inverse gaussian populations, we have found a prior which is a second 

order matching prior and reference prior for the common scale parameter. It turns 

out that the one-at-a-time reference prior satisfies the second order matching 

criterion. Also we revealed that the one-at-a-time reference prior is a joint 

probability matching prior for (λ,µ1,µ2,µ3 ) . Thus we recommend the use of the 

on-at-a-time reference prior  for the Bayesian inference in the analysis of 

reciprocals and regression models.
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