• Title/Summary/Keyword: Printing Volume

Search Result 114, Processing Time 0.031 seconds

New Materials for Inkjet LCD Color Filter Manufacturing

  • Kim, Joon-Hyung;Kim, Hyun-Sik;Ha, Duk-Sik;Yu, Mi-Na
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1497-1500
    • /
    • 2006
  • Inkjet printing technology can reduce the LCD color filter manufacturing cost more than 50 %. Uniform color filter patterning can be achieved only with proper ink and barrier materials. We developed new ink and black matrix materials for inkjet color filter. The ink materials have low volatility while they have very high solid content. The black matrix materials have very precisely controlled surface energy so that the inks can fill the pixels evenly and completely. We controlled the ink drop volume and ink material to minimize the thickness difference between the black matrix and the color pixel. Micron-order jetting position accuracy was achieved. We successfully printed 14.1" color filters using our ink and black matrix materials.

  • PDF

Morphology control of inkjet-printed small-molecule organic thin-film transistors with bank structures

  • Kim, Yong-Hoon;Park, Sung-Kyu
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.199-203
    • /
    • 2011
  • Reported herein is the film morphology control of inkjet-printed 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) organic thin-film transistors for the improvement of their performance and of the device-to-device uniformity. The morphology of the inkjetted TIPS-pentacene films was significantly influenced by the bank geometry such as the bank shapes and confinement area for the channel region. A specific confinement size led to the formation of uniform TIPS-pentacene channel layers and better electrical properties, which suggests that the ink volume and the solid concentration of the organic-semiconductor solutions should be considered in designing the bank geometry.

Design of Control System for Circular Knitting Machine with Tension Control Capability

  • Yeo, Hee-Joo;Kim, Jae-Won;Kim, Byoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.76.1-76
    • /
    • 2001
  • Up to now, various continuous-processing systems are used in the various industrial applications such as textile machines, iron-manufacturing plants, paper-making machines, printing machines, and so on. In these applications, the tension forced on the products in the control volume can be changed according to the velocity difference between the feeding roll and the delivery roll. Specially, the tension variation generated by the velocity difference, or the inertial effect can decreases the quality of the products in the textile process. In this paper, the tension control problem in a circular knitting machine system is treated to cope these problems. Firstly, the tension relationship in the winding mechanism of general continuous-processing ...

  • PDF

On-demand electrohydrodynamic printing with meniscus controls by a piezoelectric actuator (압전 액츄에이터의 메니스커스 제어를 통한 온 디멘드(On-demand) 전기 수력학 프린팅)

  • Kim, Y.J.;Kim, D.H.;Hwang, J.H.;Kim, Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2009.06a
    • /
    • pp.351-352
    • /
    • 2009
  • On-demand ejection of ultra-fine droplets that uses both electrohydrodynamic (EHD) force and mechanical actuation is presented. The liquid meniscus was controlled by a piezoelectric actuator and droplets were ejected by EHD force. Through these effects, it was possible to obtain a high operational jetting frequency of 5kHz with a short delay-time (about 50 us) when compared with existing on-demand EHD jetting methods, such as the pulsating jet mode (3-10 msec) and the pulsed-voltage cone-jet mode(3.6 msec). Also, we obtained ultra-fine droplets at a volume that was at the femto-liter level simultaneously. The jetting characteristics were examined for both hydrophobicity and hydrophilicity of the surface of a capillary.

  • PDF

A 3D Solder Paste Inspection System Using Multiple Slit Rays (다중 슬릿광을 이용한 3차원 Solder Paste 검사 시스템)

  • Cho, Tai-Hoon;Huh, Byoung-Hweh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 2002
  • A 3-dimenstional automatic solder paste inspection system is described that can be used to find defects occurring in solder paste printing process. This system extracts height and volume information very fast as well as area of solder paste printed, using multiple slit ray projection and Galvano-mirror scanning. Methods are presented on calibration of camera and slit projector, real-time image processing of multiple slit images, determination of reference height, and extraction of paste height information are proposed. Performance of the system was successfully demonstrated through field tests.

An Adaptive Extrusion Control Technique for Faster FDM 3D Printing of Lithophanes (투명조각자기의 고속 FDM 3D 프린팅을 위한 가변 압출 기법)

  • Jang, Seung-Ho;Hong, Jeong-Mo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-201
    • /
    • 2017
  • This paper proposes how to solve a problem of FDM 3D printer's irregular output when changing volume of extrusion, adjusting movement speed of the printer's head and a way to fill new inner part. Existing slicers adjust directly to change the rotation speed of the stepper. In this method, the change of the extrusion area is delayed due to the gap between the stepper and the nozzle, so that precise control is difficult. We control the extrusion area adjusting the moving speed of the print head and making constantly the rotation speed of the stepper. Thus, the output time can be shortened by generating an efficient path having a short travel distance. For evaluation, we applied our method to lithophanes with detailed variation. Comparing existing methods, our method reduced output time at least 30%.

Process Optimization for Flexible Printed Circuit Board Assembly Manufacturing

  • Hong, Sang-Jeen;Kim, Hee-Yeon;Han, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • A number of surface mount technology (SMT) process variables including land design are considered for minimizing tombstone defect in flexible printed circuit assembly in high volume manufacturing. As SMT chip components have been reduced over the past years with their weights in milligrams, the torque that once helped self-centering of chips, gears to tombstone defects. In this paper, we have investigated the correlation of the assembly process variables with respect to the tombstone defect by employing statistically designed experiment. After the statistical analysis is performed, we have setup hypotheses for the root causes of tombstone defect and derived main effects and interactions of the process parameters affecting the hypothesis. Based on the designed experiments, statistical analysis was performed to investigate significant process variable for the purpose of process control in flexible printed circuit manufacturing area. Finally, we provide beneficial suggestions for find-pitch PCB design, screen printing process, chip-mounting process, and reflow process to minimize the tombstone defects.

Design of the Spur Gear with Honeycomb Lattice Structure and PBF Printing

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.529-536
    • /
    • 2023
  • In this study, the spur gear with honeycomb lattice structures are designed. The pitch diameter and body length of the spur gear are Ø93 mm and 104.0 mm, respectively. The designed gear was printed using Powder bed fusion (PBF) 3D printer. The gear is 3D printed perfectly. Even the teeth and honeycombs of the gear were output in the same way as the design shape. The printed gear with honeycomb lattice structure has a 24% smaller cross-sectional area and 29% smaller volume and weight than conventional solid structure gears. The surface roughness is approximately 4.5㎛, and the hardness is 345 HV.

Design and Implementation of Motor-Based Rehabilitation Wearable Robot Hand System using 3D Printing (3D 프린팅을 활용한 전동식 재활용 웨어러블 로봇 손 시스템의 설계 및 구현)

  • Kim, Hyeon-Jun;Kim, Jung-Hyun;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.941-946
    • /
    • 2021
  • This paper is a study on the design and implementation of a rehabilitation wearable robotic hand that reduces weight and volume by using a 3D printer and a motor. Rehabilitation wearable robots are important not only for the effect of rehabilitation but also for ease of use. However, most of the currently researched and developed rehabilitation exoskeleton robots are heavy in volume and weight, or they have to be used in place. Therefore, a wearable robot that is easy to wear and does not burden the user is required, so a lightweight electric rehabilitation wearable robot hand is proposed. A 3D printer was used to reduce the weight and volume and to make it easier to wear. In addition, to increase portability, the structure was simplified by adopting an electric method rather than a pneumatic method. Finally, the effectiveness was examined through the experiment of the lightweight electric rehabilitation wearable robot hand.

The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT (Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가)

  • An, Ye Chan;Kim, Jin Man;Kim, Chan Yang;Kim, Jong Sik;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.41-52
    • /
    • 2020
  • Purpose: To find out the dosimetric usefulness, setup reproducibility and efficiency of applying 3D Bolus by comparing two treatment plans in which Commercial Bolus and 3D Bolus produced by 3D Printing Technology were applied to the neck during VMAT treatment of Hypopahrynx Cancer to evaluate the clinical applicability. Materials and Methods: Based on the CT image of the RANDO phantom to which CB was applied, 3D Bolus were fabricated in the same form. 3D Bolus was printed with a polyurethane acrylate resin with a density of 1.2g/㎤ through the SLA technique using OMG SLA 660 Printer and MaterializeMagics software. Based on two CT images using CB and 3D Bolus, a treatment plan was established assuming VMAT treatment of Hypopharynx Cancer. CBCT images were obtained for each of the two established treatment plans 18 times, and the treatment efficiency was evaluated by measuring the setup time each time. Based on the obtained CBCT image, the adaptive plan was performed through Pinnacle, a computerized treatment planning system, to evaluate target, normal organ dose evaluation, and changes in bolus volume. Results: The setup time for each treatment plan was reduced by an average of 28 sec in the 3D Bolus treatment plan compared to the CB treatment plan. The Bolus Volume change during the pretreatment period was 86.1±2.70㎤ in 83.9㎤ of CB Initial Plan and 99.8±0.46㎤ in 92.2㎤ of 3D Bolus Initial Plan. The change in CTV Min Value was 167.4±19.38cGy in CB Initial Plan 191.6cGy and 149.5±18.27cGy in 3D Bolus Initial Plan 167.3cGy. The change in CTV Mean Value was 228.3±0.38cGy in CB Initial Plan 227.1cGy and 227.7±0.30cGy in 3D Bolus Initial Plan 225.9cGy. The change in PTV Min Value was 74.9±19.47cGy in CB Initial Plan 128.5cGy and 83.2±12.92cGy in 3D Bolus Initial Plan 139.9cGy. The change in PTV Mean Value was 226.2±0.83cGy in CB Initial Plan 225.4cGy and 225.8±0.33cGy in 3D Bolus Initial Plan 224.1cGy. The maximum value for the normal organ spinal cord was the same as 135.6cGy on average each time. Conclusion: From the experimental results of this paper, it was found that the application of 3D Bolus to the irregular body surface is more dosimetrically useful than the application of Commercial Bolus, and the setup reproducibility and efficiency are excellent. If further case studies along with research on the diversity of 3D printing materials are conducted in the future, the application of 3D Bolus in the field of radiation therapy is expected to proceed more actively.