• Title/Summary/Keyword: Printed model

Search Result 326, Processing Time 0.031 seconds

A Recognition System for Multi-Form Korean Characters Based on Hierarchical Temporal Memory

  • Haibao, Nan;Bae, Sun-Gap;Bae, Jong-Min;Kang, Hyun-Syug
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1718-1727
    • /
    • 2009
  • Traditional character recognition systems usually aim at characters with simple variation. With the development of multimedia technology, printed characters may appear more diversely. Existing recognition technologies can't deal with Hangul recognition effectively in diverse environments. This paper presents a recognition system for multi-form Korean characters called RSMFK, which is based on the model of Hierarchical Temporal Memory (HTM). Our system can effectively recognize the printed Korean characters of different fonts, scales, rotation, noise and background. HTM is a model which simulates the neocortex of human brain to recognize and memorize intelligently. Experimental results show that RSMFK performs a good recognition rate of 97.8% on average, which is proved to be obviously improved over the conventional methods.

  • PDF

Fabrication of Tissue Engineered Intervertebral Disc Using Enable 3D bio-printing and Scaffod-Free technologies (3D 바이오프린팅과 무지지체 조직공학 기술 기반 추간판 복합 조직 제작)

  • Kim, Byeong Kook;Park, Jinho;Park, Sang-Hyug
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • Intervertebral disc(IVD) mainly consists of Annulus fibrosus(AF) and Nucleus pulposus(NP), playing a role of distributing a mechanical load on vertebral body. IVD tissue engineering has been developed the methods to achieve anatomic morphology and restoration of biological function. The goal of present study is to identify the possibilities for creating a substitute of IVD the morphology and biological functions are the same as undamaged complete IVD. To fabricate the AF and NP combine biphasic IVD tissue, AF tissue scaffolds have been printed by 3D bio-printing system with natural biomaterials and NP tissues have been prepared by scaffold-free culture system. We evaluated whether the combined structure of 3D printed AF scaffold and scaffold-free NP tissue construct could support the architecture and cell functions as IVD tissue. 3D printed AF scaffolds were printed with 60 degree angle stripe patterned lamella structure(the inner-diameter is 5mm, outer-diameter is 10 mm and height is 3 mm). In the cytotoxicity test, the 3D printed AF scaffold showed good cell compatibility. The results of histological and immunohistochemical staining also showed the newly synthesized collagens and glycosaminoglycans, which are specific makers of AF tissue. And scaffold-free NP tissue actively synthesized glycosaminoglycans and type 2 collagen, which are the major components of NP tissue. When we combined two engineered tissues to realize the IVD, combined biphasic tissues showed a good integration between the two tissues. In conclusion, this study describes the fabrication of Engineered biphasic IVD tissue by using enable techniques of tissue engineering. This fabricated biphasic tissue would be used as a model system for the study of the native IVD tissue. In the future, it may have the potential to replace the damaged IVD in the future.

Investigation of the marginal fit of a 3D-printed three-unit resin prosthesis with different build orientations and layer thicknesses

  • Yang, Min-Seong;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.250-261
    • /
    • 2022
  • PURPOSE. The purpose of this study was to analyze the marginal fit of three-unit resin prostheses printed with the stereolithography (SLA) method in two build orientations (45°, 60°) and two layer thicknesses (50 ㎛, 100 ㎛). MATERIALS AND METHODS. A master model for a three-unit resin prosthesis was designed with two implant abutments. Forty specimens were printed using an SLA 3D printer. The specimens were printed with two build orientations (45°, 60°), and each orientation was printed with two layer thicknesses (50 ㎛, 100 ㎛). The marginal fit was measured as the marginal gap (MG) and absolute marginal discrepancy (AMD), and MG and AMD measurements were performed at 8 points per abutment, for 16 points per specimen. All statistical analyses were performed using SPSS software. Two-way analysis of variance (ANOVA) was separately performed on the MG and AMD values of the build orientations and layer thicknesses. Moreover, one-way ANOVA was performed for each point within each group. RESULTS. The margins of the area adjacent to the pontic showed significantly high values, and the values were smaller when the build orientation was 45° than when it was 60°. However, the margin did not differ significantly according to the layer thicknesses. CONCLUSION. The marginal fit of the three-unit resin prosthesis fabricated by the SLA 3D method was affected by the pontic. Moreover, the marginal fit was affected by the build orientation. The 45° build orientation is recommended.

Three-Dimensional Printing of Congenital Heart Disease Models for Cardiac Surgery Simulation: Evaluation of Surgical Skill Improvement among Inexperienced Cardiothoracic Surgeons

  • Ju Gang Nam;Whal Lee;Baren Jeong;Eun-Ah Park;Ji Yeon Lim;Yujin Kwak;Hong-Gook Lim
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.706-713
    • /
    • 2021
  • Objective: To evaluate the impact of surgical simulation training using a three-dimensional (3D)-printed model of tetralogy of Fallot (TOF) on surgical skill development. Materials and Methods: A life-size congenital heart disease model was printed using a Stratasys Object500 Connex2 printer from preoperative electrocardiography-gated CT scans of a 6-month-old patient with TOF with complex pulmonary stenosis. Eleven cardiothoracic surgeons independently evaluated the suitability of four 3D-printed models using composite Tango 27, 40, 50, and 60 in terms of palpation, resistance, extensibility, gap, cut-through ability, and reusability of. Among these, Tango 27 was selected as the final model. Six attendees (two junior cardiothoracic surgery residents, two senior residents, and two clinical fellows) independently performed simulation surgeries three times each. Surgical proficiency was evaluated by an experienced cardiothoracic surgeon on a 1-10 scale for each of the 10 surgical procedures. The times required for each surgical procedure were also measured. Results: In the simulation surgeries, six surgeons required a median of 34.4 (range 32.5-43.5) and 21.4 (17.9-192.7) minutes to apply the ventricular septal defect (VSD) and right ventricular outflow tract (RVOT) patches, respectively, on their first simulation surgery. These times had significantly reduced to 17.3 (16.2-29.5) and 13.6 (10.3-30.0) minutes, respectively, in the third simulation surgery (p = 0.03 and p = 0.01, respectively). The decreases in the median patch appliance time among the six surgeons were 16.2 (range 13.6-17.7) and 8.0 (1.8-170.3) minutes for the VSD and RVOT patches, respectively. Summing the scores for the 10 procedures showed that the attendees scored an average of 28.58 ± 7.89 points on the first simulation surgery and improved their average score to 67.33 ± 15.10 on the third simulation surgery (p = 0.008). Conclusion: Inexperienced cardiothoracic surgeons improved their performance in terms of surgical proficiency and operation time during the experience of three simulation surgeries using a 3D-printed TOF model using Tango 27 composite.

A Study on Prediction Model Performance of Scaffold Pore Size Using Machine Learning Regression Method (머신 러닝 회귀 방안을 이용한 인공지지체 기공 크기 예측모델 성능에 관한 연구)

  • Lee, Song-Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • In this paper, We need to change all print factors when which print scaffold with 400 ㎛ pore using FDM 3d printer. Therefore the print quantity is 10 billion times, So we are difficult to print on workplace. To solve the problem, we used the prediction model based machine learning regression. We preprocessed and learned the securing print condition data, and we produced different kinds of prediction models. We predicted the pore size of scaffolds not securing with new print condition data using prediction models. We have derived the print conditions that satisfy the pore size of 400 ㎛ among the predicted print conditions of pore size. We printed the scaffolds 5 times on the condition. We measured the pore size of the printed scaffold and compared the average pore size with the predicted pore size. We confirmed that error was less than 1%, and we were identify the model with the highest pore size prediction performance of scaffold.

Accuracy of dies fabricated by various three dimensional printing systems: a comparative study (다양한 삼차원 프린팅 시스템으로 제작된 다이의 정확도 비교)

  • Baek, Ju Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.242-253
    • /
    • 2020
  • Purpose: The aim of this study was to compare the accuracy of dies fabricated using 3D printing system to conventional method and to evaluate overall volumetric changes by arranging the superimposed surfaces. Materials and Methods: A mandibular right first molar from a dental model was prepared, scanned and fabricated with composites of polyetherketoneketone (PEKK). Master dies were classified into 4 groups. For the conventional method, the impression was taken with polyvinylsiloxane and the impression was poured with Type IV dental stone. For the 3D printing, the standard die was scanned and converted into models using three different 3D printers. Each of four methods was used to make 10 specimens. Scanned files were superimposed with the standard die by using 3D surface matching software. For statistical analysis, Kruskal-Wallis test and Mann-Whitney U test were done (P < 0.05). Results: Compared to the standard model, the volumetric changes of dies fabricated by each method were significantly different except the models fabricated by conventional method and 3D printer of Stereolithography (P < 0.05). The conventional dies showed the lowest volumetric change than 3D printed dies (P < 0.05). 3D printed dies fabricated by Stereolithography showed the lowest volumetric change among the different 3D printers (P < 0.05). Conclusion: The conventional dies were more accurate than 3D printed dies, though 3D printed dies were within clinically acceptable range. Thus, 3D printed dies can be used for fabricating restorations.

Experimental Study on the Improvement of Flexural Strength In Slim Multi-Layer Printed Circuit Boards (Slim Multi-Layer Printed Circuit Boards 의 굽힘 강도 개선에 관한 실험적 연구)

  • Kim, Sang-Mok;Ku, Tae-Wan;Song, Woo-Jin;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.321-325
    • /
    • 2007
  • Recently, demands on thin multi-layer printed circuit boards(PCB) have been rapidly increased with broad spread of personal portable digital appliances such as multi-media. In case of mobile phone, however, the fact that PCBs have low flexural strength might cause defects. The purpose of this study is to improve the flexural strength by substituting the well-known GFRP(glass fiber reinforced plastic) for CFRP(carbon fiber reinforced plastic). Firstly, finite element simulation was carried out using ABAQUS to find out a unique CFRP layer that has a role to sustain the applied forces mainly in PCB. Secondly, three point bending tests were conducted with the newly designed CFRP PCB model to verify the improvement of the flexural strength. Consequently, it is shown that PCB layered with the CFRP on both outer sides of the board can be used to improve the flexural strength effectively.

  • PDF

Analysis of the quality of dental prostheses printed by digital light-processing technology (디지털 광공정 방식에 의해 출력된 치과용 보철물의 품질 분석)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.197-201
    • /
    • 2020
  • Purpose: This study aimed to assess the quality of dental prostheses printed by digital light-processing (DLP) technology. Methods: Ten experimental models were prepared. The ten specimens that were printed by DLP technology constituted the DLP group. The ten specimens that were produced in the same model by the casting method constituted the control group. The marginal gaps of the 20 specimens produced were measured. These gaps were measured by a silicon replica technique at two abutments of the specimen. Therefore, 20 marginal gaps were measured in each group. An independent sample t-test was performed to compare the marginal gaps measured in the two groups (α=0.05). Results: According to the results of the measurement, there was a significant difference between the mean marginal gap of the control group (78.8 ㎛) and that of the DLP group (91.5 ㎛), p<0.001. Conclusion: Although the mean marginal gaps of dental fixed prostheses produced by the DLP method was higher than the mean marginal gap of those produced by the casting method, it was considered to be within the clinical threshold value suggested by some previous studies.

Numerical Analysis on Longitudinal Heat Conduction in Printed Circuit Heat Exchanger (인쇄기판형 열교환기의 유동방향 전도열전달에 관한 수치해석 연구)

  • Oh, Dong-Wook;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.600-604
    • /
    • 2014
  • Longitudinal heat conduction is known to be an important factor in the design of a printed circuit heat exchanger(PCHE) for cryogenic applications. Parasitic heat conduction through the heat exchanger frame needs to be considered because it is known to decrease the effectiveness of the heat exchanger. In this paper, a conjugate heat transfer problem in a simple counter-flow PCHE is analyzed by a computational fluid dynamics simulation. The effect of longitudinal conduction in a straight channel is compared with the theoretical effectiveness-NTU relationship that assumes a "thin" heat exchanger frame. The calculation results suggest that the theoretical model is valid in the present calculation conditions where NTU is < 13.

Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods (DLP, FDM 3D 프린팅 출력 방식에 따른 치수 특성에 관한 연구)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2021
  • In this paper, we analyzed and considered the precision of parts produced by 3D printing methods. For the latch systems applied to the Wingline folding doors, the 3D shape of the door hinge part was printed using FDM and DLP methods. Then, the 3D printed shape was scanned to measure the dimensions and dimensional changes of the actual model. In the comparison and analysis of the 3D printed door hinge parts, because the output filling density is 100% owing to the characteristics of DLP 3D printing, the filling density in FDM 3D printing was also set to 100%.