• 제목/요약/키워드: Principal strain

검색결과 275건 처리시간 0.029초

비틀림전단시험에 의한 모래의 강도특성 (Strength Characteristics of Sand in Torsion Shear Tests)

  • 남정만;홍원표;한중근
    • 한국지반공학회지:지반
    • /
    • 제13권4호
    • /
    • pp.149-162
    • /
    • 1997
  • 주응력회전시 모래의 강도특성을 연구하기 위하여 일련의 응력경로에 대해 시험을 실시하였다. 이들 결과는 공시체의 높이에 따라 25cm와 40cm로 분류할 수 있으며 공시체에 작용된 토르 크(Torque)는 시계방향으로만 작용시켰다. 본 연구에서는 비 틀림전단시험시 주응력비에 대한 모래의 강도특성이 조사되었고 그 결과를 Lade의 파괴규준과 비교하여 보았다. 그리고 공시체높 이에 대한 영향을 고려하였다. 이들 시험결과로 부터 모래의 내부마찰각은 축차주응력비 $b:(\sigma_2 -\sigma_s)/(\sigma_2,-\sigma_3)$에 많은 영향을 받는 것으로 나타났다. 모래의 파괴강도는 응력경로에 영향을 받지 않고 현재의 응력상태에 의해 결정 되어지며 25cm와 40cm 높이의 공시체에 대한 비교로부터 단부구속의 영향은 발견할 수 없었다. 그리고 신장력이 작용된 b=0.5 이상인 시험에서는 변형을 국부현상에 의한 Necking현상이 발견되었다.

  • PDF

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

SENSITIVITY OF SHEAR LOCALIZATION ON PRE-LOCALIZATION DEFORMATION MODE

  • Kim, Kwon--Hee-
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.83-102
    • /
    • 1992
  • As shear localization is observed in different deformation modes, an attempt is made to understand the conditions for shear localization in general deformation modes. Most emphasis in put upon the effects of pre-localization deformation mode on the onset of shear localization and all the other well-recognized effects of subtle constitutive features and imperfection sensitivity studied elsewhere are not investigated here. Rather, an approximate perturbation stability analysis is performed for simplified isotropic rigid-plastic solids subjected to general mode of homogeneous deformation. Shear localization is possible in any deformation mode if the material has strain softening. The incipient rate of shear localization and shear plane orientations are strongly dependent upon the pre-localization deformation mode. Significant strain softening is necessary for shear localization in homogeneous axisymmetric deformation modes while infinitesimal strain softening is necessary for shear localization in plane strain deformation mode. In any deformation mode, there are more than one shear plane orientation. Except for homogeneous axisymmetric deformation modes, there are two possible shear plane orientations with respect to the principal directions of stretching. Some well-known examples are discussed in the light of the current analysis.

  • PDF

PIV/OH PLIF 동시 측정을 이용한 동축공기 수소확산화염의 실험적 연구 (Simultaneous PIV/OH PLIF Measurements in Hydrogen Nonpremixed Flames with Coaxial Air)

  • 김문기;김승한;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.115-123
    • /
    • 2003
  • Simultaneous measurements of velocity and OH distribution were made using particle image velocimetry(PIV) and planar laser-induced fluorescence(PLIF) of OH radical in turbulent hydrogen nonpremixed flames with coaxial air. The OH radical was used as an approximate indicator of chemical reaction zone. The OH layer was correlated well with the stoichiometric velocity, $U_s$, instantaneously and on average. In addition, high strain-rate regions almost coincide with the OH distribution. The residence time in flame surface, calculated from the root-mean-square value of the radial velocity, is proportional to $(x/d_F)^{0.7}$. It is found that the mean value of principal strain rate on the OH layer can be scaled with $(x/d_F)^{-0.7}$ and therefore, the product of the residence time and the mean strain rate remains constant over all axial positions.

  • PDF

초고강도 콘크리트의 응력-병형률 모델 제안 (Proposed New Model for the Stress-Strain Relationship of Ultra High-Strength Concrete)

  • 박훈규;이정화;윤영수;장일영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.406-412
    • /
    • 1997
  • This paper presents the newly developed model for the stress-strain relationship of ultra high- strength concrete on the basis of the more refined statistical to analysis the various test results available in the literature to be more rigorous in accuracy and generalized scheme. Through the comprehensive analysis of the previously existing equations for each model, multiple curves equation has turned out to be most appropriate to simulate the linearly varying ascending branch and brittle type of descending one. The principal variables to model the stress-strain relationship such as the modulus of elasticity, ultimate strain and deformation characteristics due to stress softening phenomenon were extensively studied to be simplified in the function of the concrete compressive strength.

  • PDF

Experimental Characterization of Dynamic Tensile Strength in Unidirectional Carbon/Epoxy Composites

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.139-156
    • /
    • 2008
  • This study aims to characterize the dynamic tensile strength of unidirectional carbon/epoxy composites. Two different carbon/epoxy composite systems, the unidirectional T700S/2500 and TR50S/modified epoxy, are tested at the static condition and the strain rate of $100\;s^{-1}$. A high-strain-rate test was performed using a tension-type split Hopkinson bar technique with a specific fixture for specimen. The experimental results demonstrated that both tensile strength increase with strain rate, while the fracture behaviors are quite different. By the use of the rosette analysis and the strain transformation equations, the strain rate effects of material principal directions on tensile strength are investigated. It is experimentally found that the shear strain rate produces the more significant contribution to strain rate effect on dynamic tensile strength. An empirical failure criterion for characterizing the dynamic tensile strength was proposed based on the Hash-in's failure criterion. Although the proposed criterion is just the empirical formula, it is in better agreement with the experimental data and quite simple.

압축성(壓縮性) 모래의 3차원(次元) 변형거동(變形擧動) (Three Dimensional Deformation Behaviour of Compressible Sand)

  • 박병기;정진섭;임성철
    • 대한토목학회논문집
    • /
    • 제10권3호
    • /
    • pp.107-113
    • /
    • 1990
  • 압축성(壓縮性) 모래를 사용하여 주응력(主應力)을 각기 독립적으로 조절할 수 있는 입방체삼축시험(立方體三軸試驗)을 하였다. 그 결과 초기(初期) 변형계수(變形係數)는 b값의 증가와 더불어 증가하고 중간주응력(中間主應力)이 b값이 적을 때는 주변형율간(主變形率間)의 거동(擧動)에 영향을 미치지 못하고 배수(排水) 경우는 b=0.3, 비배수(非排水)경우는 b=0.6 값에서부터 b값이 커질수록 최대주변형율(最大主變形率)(${\varepsilon}_1$) 값이 더 적은 값에서 파괴(破壞)된다. 파괴시(破壞時) 소성변율(塑性變形率) 중분벡터의 방향은 배수조건(排水條件)에 무관하고 직교조건은 3축면(三軸面)에서는 만족되지 않으나 팔면체면(八面體面)에서는 만족되는 재료(材料)임을 알았다.

  • PDF

다축응력상태에서의 304 스테인리스강의 고온 파괴수명에 관한 연구 (High temperature rupture lifetime of 304 stainless steel under multiaxial stress states)

  • 김호경;정강;정진성
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.595-602
    • /
    • 1998
  • Specimens of 304 stainless steel were tested to failure at elevated temperatures under multiaxial stress states, uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times are compared for uniaxial, biaxial, and triaxial stress states with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the principal facet stress gives the best correlation for the material investigated, and this parameter can predict creep life data under multiaxial stress states with rupture data obtained with specimens under uniaxial stresses. The results also suggest that grain boundary cavitation, coupled with localized deformation processes such as grain boudary sliding, controls the lifetimes of the specimens.

Investigation of Bottom Cracks in the Carbonated Poly(ethylene terephthalate) Bottle

  • Pae, You-Lee;Nah, Chang-Woon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • 제38권4호
    • /
    • pp.354-362
    • /
    • 2003
  • The use of a petaloid design for the bottom of carbonated poly(ethylene terephthalate)(PET) bottles is widely spread. This study investigated the causes of bottom cracks. The tensile yield stress variations of PET according to the crystallinity and stretch ratio were examined, then the stretch ratio and strength in the bottom area of a blown bottle were analyzed. A crack test was also performed to observe the cracking phenomena. The distribution of the effective stress and maximum principal stress were both examined using computer simulation to seek the influence of the bottom design on crack. It was concluded that the bottom cracks occurred because of inadequate material strength due to the insufficient stretching of PET, plus the coarse design of a petaloid bottom. The stretch ratio at the bottom during bottle blowing should be higher than the strain hardening point of PET to produce enhanced mechanical strength. The cracks in the bottom of the PET bottles occurred through crazing below the yield stress. The maximum principal stress was higher in the valleys of the petaloid bottom than in the rest bottom area, and the maximum principal stress had a strong effect on the cracks.

High-Temperature Rupture of 5083-Al Alloy under Multiaxial Stress States

  • Kim Ho-Kyung;Chun Duk-Kyu;Kim Sung- Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1432-1440
    • /
    • 2005
  • High-temperature rupture behavior of 5083-Al alloy was tested for failure at 548K under multiaxial stress conditions: uniaxial tension using smooth bar specimens, biaxial shearing using double shear bar specimens, and triaxial tension using notched bar specimens. Rupture times were compared for uniaxial, biaxial, and triaxial stress conditions with respect to the maximum principal stress, the von Mises effective stress, and the principal facet stress. The results indicate that the von Mises effective and principal facet stresses give good correlation for the material investigated, and these parameters can predict creep life data under the multiaxial stress states with the rupture data obtained from specimens under the uniaxial stress. The results suggest that the creep rupture of this alloy under the testing condition is controlled by cavitation coupled with highly localized deformation process, such as grain boundary sliding. It is also conceivable that strain softening controls the highly localized deformation modes which result in cavitation damage in controlling rupture time of this alloy.