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Abstract

As shear localization is observed in different deformation modes, an attempt is made to
understand the conditions for shear localization in general deformation modes. Most emphasis in
put upon the effects of pre-localization deformation mode on the onset of shear localization and all
the other well-recognized effects of subtle constitutive features and imperfection sensitivity studied
elsewhere are not investigated here. Rather, an approximate perturbation stability analysis is
performed for simplified isotropic rigid-plastic solids subjected to general mode of homogeneous
deformation. Shear localization is possible in any deformation mode if the material has strain
softening. The incipient rate of shear localization and shear plane orientations are strongly
dependent upon the pre-localization deformation mode. Significant strain softening is necessary for
shear localization in homogeneous axisymmetric deformation modes while infinitesimal strain
softening is necessary for shear localization in plane strain deformation mode. In any deformation
mode, there are more than one shear plane orientation. Except for homogeneous axisymmetric
deformation modes, there are two possible shear plane orientations with respect to the principal
directions of stretching. Some well-known examples are discussed in the light of the current

analysis.

1. Introduction

Shear localization is an important precursor to ductile fracture and is observed in a wide class
of materials in different modes of deformation. It occurs in quasistatic deformation as well as in
dynamic deformation, in metals, polymers, concretes and geological materials. Often times, shear
localization is preceded by necking as in the case of plane strain tensile test specimens. Unlike the

case of necking, shear localization does not involve geometrical softening (reduction of load



carrying area) and hence the phenomenon has been attributed solely to materials’ constitutive
teatures such as strain hardening characteristics (kinematic hardening and yield surface corners),
flow non-normality due to dilatancy and associated pressure sensitivity, rate sensitivity [1-8] and
temperature dependence (in the case of adiabatic heating) [9-11]. Along this line, significant efforts
have been made and now it is commonly understood that shear localization is extremely sensitive
to these subtle constitutive features. Moreover, shear localization is also known to be very

sensitive to the material's imperfection and inhomogeneity [8,12].

Most of the previous studies have been confined to one dimensional simple shear field or two
dimensional plane strain deformation field. It is certain that these deformation modes are most
favorable to shear localization when the conditions are met, but shear localization is observed also
in the upsetting of circular cylindrical specimens [13,14] and in the necked region of biaxially
stretched sheets [15]. Relatively little attentionhas been paid to the details of shear localization in
general deformation field even though some of the studies have general three dimensional analytical
frameworks (Rudnicki and Rice) . In this paper, the major premise is that pre-localization
deformation mode has definite effect on the onset of shear localization. Along this line, an attempt
will be made to the systematic understanding of this issue. For the simplicity of the analysis, the
effects of various subtle constitutive features mentioned above will not be incorporated in the
analysis. Rather, a simple approximate linear perturbation stability analysis will be performed for
rate-independent rigid-plastic isotropic materials. Since the introduction of linear perturbation
stability analysis for the prediction of thermo-mechanical shear instability in simple shear deformation
of viscoplastic solids by Clifton [1980] and Bai [1982], linear perturbation stability analsis has
received considerable attention as ananalytical tool for the prediction of the critical conditions for
the onset of shear localization {16-18]. This analysis technique has been extended to cover shear
localization in general three dimensional deformation field for isotropic viscoplastic solids recently
by Anand, Kim and Shawki [1987]. In the following, their analysis methodis applied to

rate-independent isotropic rigid-plastic solids subjected to quasi-staticdeformation.

2. Field Equations

1t will be assumed that the effects of elasticity are negligible. For rate-independent isotropic

solids, von Mises type J, flow rule will be used. For this class of material, stretching D is



given as a function of applied stress such as
D=y[S/27]
Here D is stretching defined as

D =sym(grad v)

for the velocity field v = v(x,t) and,

S=T+pl
is the stress deviator of the Cauchy stress T with mean normal pressure
1
p=—=trT
3
and,
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T=4/—=S-S
2

is the equivalent shear stress and,
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is the equivalent plastic strain rate with a hardening parameter h. From (5) equivalent plastic shear

strain ¥ is defined as
YO =[¥d

We assume that ¥ is a function of only T such as

¥=%(7)
which can be obtained from the inversion of the stress-strain relation

T=1(¥)
From (6)-(8), we note that hardening h is given as

dt

h=—
dy

The equation of motion for quasi-static deformation in the absence of body force is

divT=0
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3. Perturbation Stability Analysis

Let B, and B, denote configurations of a body at times t and T >t , respectively. The
relative motion of the body is characterized by a function
p.(x,T) (11

which gives the place occupied at time T by a material particle which at time t occupied the place

X . The vector valued functions

u (x,7) =p,(x,T)—x

(12)
du, (x,7)

u(x,7)= >

describe the relative displacement and the relative velocity respectively. Equation (10) for the

equilibrium at time T may be expressed as
div S,(x,7)=0 (13)
where S, is the relative first Piola Kirchhoff stress tensor which describe the actual forces in the

configuration B per unit area of the configuration B, . It is denoted by the relation

S.(x,1) = (det E(x,7)) T(p,(x,1),7) E"(x,7) (14)

d .
where E = -5p—'det F.(x,7)F " is the relative deformation gradient, (det F) its determinant,
x

F:T the transpose of its inverse. For the perturbation stability analysis we consider that the body

is homogeneous and homogeneously deformed in its current configuration B, . If the body is

subjected to boundary conditions which could give rise to continued homogeneous deformation,

then the field equations together with the appropriate boundary conditions determine the homogeneous
solution [uf,Sf ] . Next, we wish to determine that if this homogeneous solution is perturbed so
that the configuration B_ of the body, with At=(T—-1) — 0 , differs only by infinitesimal



displacements of a shear band mode relative to B, , then can this perturbation grow while the field

variables still satisfythe field equations? Let the normal to the perturbation shear band have an
orientation n in B, . The homogeneous solution [u:’,Sf] is assumed to be perturbed by a small

fluctuation which varies with (x—0)-n , that is, with position across the band. Accordingly,

we assume that the relative velocity field can be written as

u(x,T)=u(x,T) + v , € << 1 (15a)
corresponding to which
E(x,7)=F(x,7) + e grad v (15b)
For the perturbation velocity field (15a) to be of a form which may lead to shear band formation,
we require that
gradv=a-n (16a)
where
a=a((x—0)-n, At) (16b)

is an amplitude vector which is parallel to the shear plane such that
a-n=0 (16¢c)
As aresult of velocity perturbation, the stress field will also be perturbed as

§l(x,’t) = _S‘f(x,‘c) +¢eT
with 17)
T=T((x-0)-n,At)

Substituting from (17) into (13), we obtain the following equilibrium equation for the perturbed
stress field

divT=0 (18)
In order to analyze the stability of the homogencous solution, we consider solutions of (18) of the
form

v=90v, (192)

q):{exp {i&x—-0)-n+nAt} inside the band (19)

0 outside the band



v.=const. , v.-n=0 (1%)
For this assumed form of the perturbation in the velocity
gradv=a®n (19d)
with
a=i§v ,and a-n=0 (1%)
and this satisfies the requirement (16). Here, & is the wave number of the periodic perturbation in
the direction normal to the shear band. If a solution in the form of (19) exists with n real and
positive, then the perturbation may grow with time and a shear band type instability is possible.
However, if 7] is real and negative, the perturbationis likely to decay with time and the homogeneous
solution is considered stable. For this type of velocity perturbation, the perturbation in the stress
takes the form

T=¢T. , T.=const. 20)

where the constant coefficient tensor T. can be obtained as follows. Since ¥ = v/2D- D the

perturbation in the equivalent plastic shear strain rate ¥ can be wrilten as

=01. W
where
fo=G®gv. | @1
with
g= —;2-°-D° -n
Y

1 =
Also, since — has dimensions of time, the perturbation in the equivalent plastic shear strain Y
can be estimated by
¥
= ¢(— 22
n

Further, from the constitutive equations, the perturbation in the equivalent shear stress Tis



=0T,
where
T, = 31) Y.
n )

(23)

where h° is strain hardening evaluated at the homogeneous solution at time ¢ . It is important to

note that these are time varying quantities. Next, from the constitutive equations (1) - (9) and

equations (19) - (23) it follows that

he° =0 _ To
T=|—-—|7.D°+(i (;—o
(n 'Y) (%) Y
with
o (2)
Y

N

)(v.®n+n®v.)
(24

Upon substituting (20) in (18) and further substitution from (21) and (24) for ‘?. and T, we obtain

an equilibrium condition inside the shear band

with

25

For non-trivial velocity perturbation v, , equation (25) implies that

det A=0

(26)

Further, the perturbation in the normal traction N on the shear plane can be obtained from (19),

(20) and (24) as



= (T)=6)0 (- (ev.) (50 @

We note here that there can be no jump in the value of normal traction across the shear band, and

thus

(L2 v ern)=0 @)

n v

From (25a) and (25b), we have

o =o

T
and it is readily seen that for non-trivial solution for v. , the term (—E- —.—-) ( g v.) cannot

?0

have zero value. Hence the normal traction continuity condition across the shear band requires that

g.n=_?.2:(no n) n=0 @)

3
D" =) we ¢, (30)
i=l

denote a spectral representation of the homogeneous stretching. Here, {ci} with i=1, 2, 3 are the

eigenvectors and {“i} are the eigenvalues of D° with o, 2 O, 2 5. Then equation (26) can be

rearranged as
Cy+Cy +1=0 (31a)
with
ho ?o
= -1 31b
y 1 (31b)
and



C1=4(d1 d, d3)2 (n1 n, n3)2 (1c)

Co=(d, n,)’ +(d, n,)"+(d; n,)’ Gld)

d,=2% | i=1,2,3 Gle)

n,=n-e , i=123 @319
As n is a unit vector,

n-n=(n)>+(n,)* +(n,)’ =1 (32)

Also equation (29) can be rearranged as
d, (n)*+d, (n,)* +d, (n,)>=0 33)
Here, we define a Lode's variable v

Vzocl—(nt3 d, —-d, ¢y
For imcompressible materials
trD°=a1+a2+a3=—?2;(d]+d2+d3)=0 (352)
and from (31¢) and ¥° = 1/2(D° - D°),
(d)*+(d,)* +(dy)* =2 (35b)

From (34) and (35), d,,d, and d; can be expressed in terms of the Lode's variable such as



1+v W
3(1-v+V?)

d,=

1-2v L
P-v+v?) G9)

__2-v)

% ﬂ3@—v+vﬂ

From (32), (33) and (36), (nl)2 and (n, )* can be expressed in terms of (nz)2 as

(mf=2;V—O—VN%f

@37

1+v
(n3)2 = '—3__ -V ([12)2

Equations (36) and (37) show that the coefficients C, and C, of cubic equation (31a) for y are
functions of only v and (n2)2. As C, and C, are non-negative, the cubic equation has only one
real root y,_,. For given values of v and (n2)2 the cubic equation can be solved for
Yorea = ym,(v , (nz)z). From this solution and (31b), we can have

_ holio
1+yreal

(€))

'<J|.3

The term :n; represents the incipient rate of perturbation growth 1 normalized with respect to the
Y

homogeneous deformation rate ‘7". Depending upon the signs of h°® and (1 + yml), -2— can
Y

have either positive or negative values. Numerical solution of (31a) for y reveals that the sign of



2
term (l + yml) is negative for the entire ranges of values of v and (nz) , L.e.,

Yea <=1 for 0<v<1 and 0<(n,) <1 39
and thus
:T-‘- <0 for h°>0 (“0)
¥ |>0 for h°<0

From (40), it is obvious that strain softening (with h® < 0) is a necessary condition for the
growth of shear band perturbation. Thus for the case of strain softening materials, we can
rearrange (38) to have

_NY L S0 for h°<0

- 41
h°/7° I+y.. @0

=0

n/y
hO/To

2
Figure 1 shows — as a function of (nz) and v obtained from the numerical solution of

(31) and (41). The incipient rate of shear band perturbation growth 7 is strongly dependent upon

the values of v and (nz) as indicated in Figure 1. For a given value of v it has its maximum

2
value at a certain value of (nz) . For each value of v, the maximum value of | has been

normalized as in (41) and plotted against the valueof v as shown in Figure 2. It is obvious that as

the deformation mode approaches plane strain condition (v=0.5) l:-— ;](,//'Y_oj] , the maximum
T
max
value of — :11//7_0 , becomes infinite. In this case, the rate of formation of shear bands can be
T

o

infinite once the material has infinitesimal strain softening such that — has infinitesimal
T

positive value. On the other hand, for deformation modes with v =0 or 1 the value of[— hl"//y?:l
T
max



approaches a finite value in the vicinity of 2 and thus the formation of shear band requires finite

o

strain softening such that — has finite positive value. All the other deformation modes (with 0
T

<v <05 or 0.5 < v < 1) fall between these two extremes. Deformation modes withv =0 orv
= 1 are most resistant to shear band formation even though material's strain hardening characteristics
plays primary role in all deformation modes. Here, it is to be noted that for the materials which
does not show significant strain softening, shear localization is not likely to occur except in the

plane strain deformation mode.

Regarding the incipient shear plane orientations, we assume that shear bands are most likely

=o

'y
hO/EO

to form in the direction where the value of — becomes maximum. In this context, the

2 2 2
values of (nl) , (nz) ,and (n3) shown in Figure 3 represent the shear band orientations for the

entire range of v.

It can be seen from Figure 3 that except for the values of v very close to 0 (balanced biaxial
slretchiné or, uniaxial compression) or 1 (uniaxial tensile deformation) the value of 1 has its
maximum at n, = 0. Thus for the deformation modes in the range 0.079 < v <0.921, there
are two possible shear plane orientations which are parallel to the intermediate principal direction

€, of stretching tensor.

(n2)2=0,(n1)2=——,(n3)2=%l for 0.079<v<0.921 42a)

If we denote the angle to the shear plane measured from the major principal direction €, in the

e, — €, plane by 6, we have from (42a) (See Figure 4)

1/2

. for 0.079<v<0.921 (42b)

=i2—v
1+v

tan 0=+

0,

)

/Y
hﬂ/io

2
Outside this range of v, the value of (nz) at which the value of — becomes



2 2
maximum are not non-zero and the corresponding values of ( “1) and ( n3) are obtained from the

value of (n, )’ thru (37) (See Figure 3).

For the homogeneous axisymmetric deformation modes with v=0or v = 1, shear bands can
be in any orientation as far as they maintain a certain angle from €, axis or €, axis respectively.

in these cases, we have

(nz)z = (n, )2 = (“3)2 =

In the case of deformation with v = 0, the deformation field is symmetric about the €, axis

for v=0orl (43a)

W |—

and the principal directions €, and €, are not unique. The angle 0, measured from the €, axis to

the shear planes has the values

tan 0, = i-, ke |= T—=, or 6,=%4353 for v=0 @43b)

Likewise, in the case of v = 1 the angle 0, measured from the €, axis to the shear planes has

the values

=t—=, or 0,=1353 for v=1 (43c)

In the close vicinity of uniaxial deformation modes with 0 < v < 0.079 0r,0.921 < v < 1 the

growth rate becomes maximum in four different directions depending upon the signs of n,, n,

and n, as indicated in Figure 3. However, as shown in Figure 1, the growth rate has minimal

. 2 . .
variation for the entire range of (nz) values when v is very close to 0 or 1, and thus has minimal

dependence on the shear band orientation. Hence, in these ranges of v,shear bands can develop in

different directions other than these four directions.

4. Discussion



In the light of current analysis, we can revisit some of the well-known examples of shear

localization and present systematic understanding of these phenomena.

During the plane strain tension test of a metallic material, neck develops first in the gauge
section of the specimen after a certain amount of deformation. As necking is a result of
competition between material's strain hardening capability and progressive reduction of load carrying
area, it does not require complete loss of strain hardening for its occurence. Hence, necking
usually occurs first and is a precursor 10 the subscquent strain softening. As the deformation field
is already in plane strain mode, shear bands can develop at infinite speed in the necked region once

the material exhibits strain softening. The shear fracture can be understood as the result of shear
localization. The shear fracture surface is parallel to the €, axis and makes 45° with respect to

the €, axis (See Figure 5).

Another common example is necking and subsequent cup-cone type fracture in the axisymmetric
tensile test specimens of metallic materials (See Figure 6). As in the case of plane strain tensile
test specimens, necking develops first in the gauge section. For materials with cup-cone type
fracture, it can be understood that strain softening large enough for shear localization in uniaxial
mode (v = 1) is never achieved even at the core of the neck where the value of mean stress is
highest. On the other hand, at the pheriphery of the neck, the mode of deformation deviates
gradually from the uniaxial modeas the neck develops and the value of v decreases. Hence in this
region, incipient rate of shear band formation increases (Sce Figure 2) with the progress of necking
and, lessand less amount of strain softening is required for shear localization. Moreover, mean
stress is lower at the periphery of the neck compared to its core and thus normal type fracture is
less likely to precede shear localization. Hence in this region, shear fracture due to shear

localization takes place instead of normal fracture.

Another example is shear fracture during upsetting of some high strength materials [13,14].
During uniaxial compression of a circular cylinder with appropriate aspect ratio, material can
deform beyond its strain hardening limit without geometric instability. If the material exhibits
strain softening before the major development of barreling, the deformation field remains relatively

homogeneous at the onset of shear localization and thus one or two shear bands are likely to form



across the entire specimen (See Figure 7(a)). On the other hand, if the material can sustain
relatively largedeformation before it exhibits strain softening, the deformation field becomes
inhomogeneous due to the friction at the dies-workpiece interface and thus the condition for shear
localization cannot be achieved simultaneously throughout the specimen. In this case, the
deformation mode at the periphery of the specimen will deviate from thehomogeneous axisymmetric
mode (v = 0) gradually with the progress of barreling (SeeFigure 7(b)) and the incipient growth
rate of shear bands will be maximum in this region. With the aid of positive hoop stress
developed with barreling, shear localization leads to shear fracture at the periphery of the specimen.

Two conjugate shear plane orientationsare possible at each point on the periphery.

5. Conclusion

A linear peturbation stability analysis of shear localization in isotropic rate-independent
rigid-plastic solids has been performed for general three dimensional homogeneous deformation
modes. Shear localization is possible in any mode, and a necessary condition for shear localization
is strain softening. Incipient growth rate for shear band is strongly dependent upon pre-localization
deformation mode. For plnae strain deformation mode, shear localization requires infinitesimal
strain softening and the incipient growth rate for shear localization can be infinite. In other
deformation modes, finite strain softening is required and incipient growth rate becomes finite.
Uniaxial deformation modes with v = 0 (uniaxial compression or balanced biaxial stretching) or v
= 1 (uniaxial tensile deformation) are most resistant to shear localization with the lowest incipient
growth rate. Shear band orientation is strongly dependent upon the pre-localization deformation
mode and there are more than one shear band orientation in any deformation mode. For materials
which do not exhibit significant strain softening, shear localization is not likely to occur except in
the plane strain deformation mode. In the light of current analysis, qualitative but systematic

understanding of some well-known examples of shear localization has been presented.
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Figure 1. Normalized incipient rate of shear band formation (7 /%°)/(-h°/7°) as a

function of Lode's variable v and the intermediate direction cosine ng
of unit normal vector g to the shear plane. Data is obtained from the
numerical solution of equation {(31) and (41).

00 :
|
!
l
400 !
x |
=z |
% l
g 300 {
L %
~ |
5~ i
> 200 |
~ |
& i
= |
|
100 !
|
|
I
0 T T T T z T 1 T T
0,0 02 0.4 0.6 08 1.0
LODE'S VARIABLE vy
Figure 2. Maximum incipient rate of shear band formation [(7/P°)/(-h°/T9) Jmax as

a function of Lode's variable v. For homogeneous axisymmetric
tjefornation modes with v = 0 or 1, the maximus rate converges to 2 while
it converges to infinity for plane strain deformation mode with ¥ = 0.5.
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Figure 4. Possible shear band orientations with respect to the principal directions

of stretching tensor D ( eq. (30) ) in the Lode's variable range 0.079
< v <0.921. Shear planes are parallel to the intermediate principal
direction 2 and syemetrically oriented with respect to the major
principal direction 1.
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Figure 6. Necking and cup-cone type fracture in an axisymmetric tersile test
specimen.

)

ALY s

ISy

f

<> Y
/A

o) ()]

Figure 7. Shear fracture during the upsetting of circular cylinders of high
strength materials. (a) ¥aterials with lower strain hardening index.
(b) Naterials with Ligher strain hardening index.
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