• Title/Summary/Keyword: Principal components analysis (PCA)

Search Result 296, Processing Time 0.026 seconds

Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods (지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지)

  • Son, Young-Tae;Yun, Deok-Kyun
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

An Efficient Method to Compute a Covariance Matrix of the Non-local Means Algorithm for Image Denoising with the Principal Component Analysis (영상 잡음 제거를 위한 주성분 분석 기반 비 지역적 평균 알고리즘의 효율적인 공분산 행렬 계산 방법)

  • Kim, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • This paper introduces the non-local means (NLM) algorithm for image denoising, and also introduces an improved algorithm which is based on the principal component analysis (PCA). To do the PCA, a covariance matrix of a given image should be evaluated first. If we let the size of neighborhood patches of the NLM S × S2, and let the number of pixels Q, a matrix multiplication of the size S2 × Q is required to compute a covariance matrix. According to the characteristic of images, such computation is inefficient. Therefore, this paper proposes an efficient method to compute the covariance matrix by sampling the pixels. After sampling, the covariance matrix can be computed with matrices of the size S2 × floor (Width/l) × (Height/l).

ImprovementofMLLRAlgorithmforRapidSpeakerAdaptationandReductionofComputation (빠른 화자 적응과 연산량 감소를 위한 MLLR알고리즘 개선)

  • Kim, Ji-Un;Chung, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.65-71
    • /
    • 2004
  • We improved the MLLR speaker adaptation algorithm with reduction of the order of HMM parameters using PCA(Principle Component Analysis) or ICA(Independent Component Analysis). To find a smaller set of variables with less redundancy, we adapt PCA(principal component analysis) and ICA(independent component analysis) that would give as good a representation as possible, minimize the correlations between data elements, and remove the axis with less covariance or higher-order statistical independencies. Ordinary MLLR algorithm needs more than 30 seconds adaptation data to represent higher word recognition rate of SD(Speaker Dependent) models than of SI(Speaker Independent) models, whereas proposed algorithm needs just more than 10 seconds adaptation data. 10 components for ICA and PCA represent similar performance with 36 components for ordinary MLLR framework. So, compared with ordinary MLLR algorithm, the amount of total computation requested in speaker adaptation is reduced by about 1/167 in proposed MLLR algorithm.

Application of Principal Components Analysis Method to Wireless Sensor Network Based Structural Monitoring Systems

  • Congyi, Zhang;Mission, Jose Leo;Kim, Sung-Ho;Youk, Yui-Su;Kim, Hyeong-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2008
  • Typical wireless sensor networks used in structural monitoring are continuous types wherein data transmission is progressive at all time that may include irrelevant and insignificant data and information. Continuous types of wireless monitoring systems often pose problems of handling large-sized data that may deteriorate the performance of the system. The proposed method is to suggest an event-triggered monitoring system that captures and transmits relevant data only. An error signal generated by the Principal Components Analysis (PCA) is utilized as an index for event detection and selective data transmission. With this new monitoring scheme, the remote server is relieved of unwanted data by receiving only relevant information from the wireless sensor networks. The performance of the proposed scheme was verified with simulation studies.

Median HRIR Customization via Principal Components Analysis (주성분 분석을 이용한 HRIR 맞춤 기법)

  • Hwang, Sung-Mok;Park, Young-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.638-648
    • /
    • 2007
  • A principal components analysis of the entire median HRIRs in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of several orthonormal basis functions. The basis functions represent the inter-individual and inter-elevation variations in median HRIRs. There exist elevation-dependent tendencies in the weights of basis functions, and the basis functions can be ordered according to the magnitude of standard deviation of the weights at each elevation. We propose a HRIR customization method via tuning of the weights of 3 dominant basis functions corresponding to the 3 largest standard deviations at each elevation. Subjective listening test results show that both front-back reversal and vertical perception can be improved with the customized HRIRs.

Ambulatory Aid Device for the Visually Handicapped Person Using Image Recognition (화상인식을 이용한 시각장애인용 보행보조장치)

  • Park Sang-Jun;Shin Dong-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.568-572
    • /
    • 2006
  • This paper presents the device of recognizing image of the studded paving blocks, transmitting, the information by vibration to a visually handicapped person. Usually the blind uses the walking stick to recognize the studded paving block. This research uses a PCA (Principal Component Analysis) based image processing approach for recognizing the paving blocks. We classify the studded paving blocks into 5 classes, that is, vertical line block, right-declined line block, left-declined line block, dotted block and flat block. The 8 images for each of 5 classes are captured for each block by 112*120 pixels, then the eigenvectors are obtained in magnitude order of eigenvectors by using principal component analysis. The principal components for images can be calculated using projection of transformation matrix composed of eigenvectors. The classification has been executed using Euclidean's distance, so the block having minimum distance with a image is chosen as matched one. The result of classification is transmitted to the blind by electric vibration signals with different magnitudes and frequencies.

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

Characterization of Thermal Behavior of Biodegradable Poly(hydroxyalkanoate) by Two-Dimensional Correlation Spectroscopy

  • Jung, Young-Mee;Ozaki, Yukihiro;Noda, Isao
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.355-355
    • /
    • 2006
  • In this study, we have applied principal component analysis-based 2D (PCA2D) correlation spectroscopy to the temperature-dependent IR spectra of biodegradable poly(hydroxyalkanoate). PCA2D analysis reveals clearly that there are two components in crystalline band of C=O stretching mode without being hampered by noise. To better understand the thermal behavior of biodegradable poly(hydroxyalkanoate), eigenvalue manipulating transformation (EMT) technique was also employed. By uniformly lowering the power of a set of eigenvalues associated with the original data, the subtle contributions from minor eigenvectors are highlighted. Details of thermal behavior of biodegradable poly(hydroxyalkanoate) studied by PCA2D correlation spectroscopy with EMT will be discussed.

  • PDF

Pattern Recognition of the Herbal Drug, Magnoliae Flos According to their Essential Oil Components

  • Jeong, Eun-Sook;Choi, Kyu-Yeol;Kim, Sun-Chun;Son, In-Seop;Cho, Hwang-Eui;Ahn, Su-Youn;Woo, Mi-Hee;Hong, Jin-Tae;Moon, Dong-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1121-1126
    • /
    • 2009
  • This paper describes a pattern recognition method of Magnoliae flos based on a gas chromatographic/mass spectrometric (GC/MS) analysis of the essential oil components. The botanical drug is mainly comprised of the four magnolia species (M. denudata, M. biondii, M. kobus, and M. liliflora) in Korea, although some other species are also being dealt with the drug. The GC/MS separation of the volatile components, which was extracted by the simultaneous distillation and extraction (SDE), was performed on a carbowax column (supelcowax 10; 30 m{\time}0.25 mm{\time}0.25{\mu}m$) using temperature programming. Variance in the retention times for all peaks of interests was within RSD 2% for repeated analyses (n = 9). Of the 74 essential oil components identified from the magnolia species, approximately 10 major components, which is $\alpha$-pinene, $\beta$-pinene, sabinene, myrcene, d-limonene, eucarlyptol (1,8-cineol), $\gamma$-terpinene, p-cymene, linalool, $\alpha$-terpineol, were commonly present in the four species. For statistical analysis, the original dataset was reduced to the 13 variables by Fisher criterion and factor analysis (FA). The essential oil patterns were processed by means of the multivariate statistical analysis including hierarchical cluster analysis (HCA), principal component analysis (PCA) and discriminant analysis (DA). All samples were divided into four groups with three principal components by PCA and according to the plant origins by HCA. Thirty-three samples (23 training sets and 10 test samples to be assessed) were correctly classified into the four groups predicted by PCA. This method would provide a practical strategy for assessing the authenticity or quality of the well-known herbal drug, Magnoliae flos.

Comparison of 12 Isoflavone Profiles of Soybean (Glycine max (L.) Merrill) Seed Sprouts from Three Different Countries

  • Park, Soo-Yun;Kim, Jae Kwang;Kim, Eun-Hye;Kim, Seung-Hyun;Prabakaran, Mayakrishnan;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.360-377
    • /
    • 2018
  • The levels of 12 isoflavones were measured in soybean (Glycine max (L.) Merrill) sprouts of 68 genetic varieties from three countries (China, Japan, and Korea). The isoflavone profile differences were analyzed using data mining methods. A principal component analysis (PCA) revealed that the CSRV021 variety was separated from the others by the first two principal components. This variety appears to be most suited for functional food production due to its high isoflavone levels. Partial least squares discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed that there are meaningful isoflavone compositional differences in samples that have different countries of origin. Hierarchical clustering analysis (HCA) of these phytochemicals resulted in clusters derived from closely related biochemical pathways. These results indicate the usefulness of metabolite profiling combined with chemometrics as a tool for assessing the quality of foods and identifying metabolic links in biological systems.