DOI QR코드

DOI QR Code

Comparison of 12 Isoflavone Profiles of Soybean (Glycine max (L.) Merrill) Seed Sprouts from Three Different Countries

  • Park, Soo-Yun (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jae Kwang (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Kim, Eun-Hye (Department of Crop Science, College of Sanghunh Life Science, Konkuk University) ;
  • Kim, Seung-Hyun (Department of Crop Science, College of Sanghunh Life Science, Konkuk University) ;
  • Prabakaran, Mayakrishnan (Department of Crop Science, College of Sanghunh Life Science, Konkuk University) ;
  • Chung, Ill-Min (Department of Crop Science, College of Sanghunh Life Science, Konkuk University)
  • Received : 2018.11.29
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

The levels of 12 isoflavones were measured in soybean (Glycine max (L.) Merrill) sprouts of 68 genetic varieties from three countries (China, Japan, and Korea). The isoflavone profile differences were analyzed using data mining methods. A principal component analysis (PCA) revealed that the CSRV021 variety was separated from the others by the first two principal components. This variety appears to be most suited for functional food production due to its high isoflavone levels. Partial least squares discriminant analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) showed that there are meaningful isoflavone compositional differences in samples that have different countries of origin. Hierarchical clustering analysis (HCA) of these phytochemicals resulted in clusters derived from closely related biochemical pathways. These results indicate the usefulness of metabolite profiling combined with chemometrics as a tool for assessing the quality of foods and identifying metabolic links in biological systems.

Keywords

References

  1. Adlercreutz, H. and Mazur, W. 1997. Phyto-oestrogens and western diseases. Ann. Med. 29 : 95-120. https://doi.org/10.3109/07853899709113696
  2. Allred, C. D., K. F. Allred, Y. H. Ju, T. S. Geoppinger, D. R. Doerge, and W. G. Helferich. 2005. Soy processing influences growth of estrogen dependent breast cancer tumors. Carcinogenesis 25 : 1649-1657.
  3. Anthony, M. S., T. B. Clarkson, and C. L. Hughes. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J. Nutr. 126 : 43-50. https://doi.org/10.1093/jn/126.1.43
  4. Barker, M. and W. Rayens. 2003. Partial least squares for discrimination. J. Chemom. 17 : 166-173. https://doi.org/10.1002/cem.785
  5. Barnes, S. 2010. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat. Res. Biol. 8 : 89-98. https://doi.org/10.1089/lrb.2009.0030
  6. Brereton, R. G. 2009. Validation and optimization. In Chemometrics for pattern recognition; Wiley: Chichester, UK, pp. 311-391.
  7. Caldwell, C. R., S. J. Britz, and R. M. Mirecki. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean (Glycine max (L.) Merrill) grown in controlled environments. J. Agric. Food Chem. 53 : 1125 -1129. https://doi.org/10.1021/jf0355351
  8. Carrao-Panizzi, M. C., M. Berhow, J. M. G. Mandarino, and M. C. N. Oliveira. 2009. Environmental and genetic variation of isoflavone content of soybean seeds grown in Brazil. Pesq. Agropec. Bras. 44 : 1444-1451. https://doi.org/10.1590/S0100-204X2009001100011
  9. Chan, S. G., P. A. Murphy, S. C. Ho, N. Kreiger, G. Darlington, E. K. F. So, and P. Y. Y. Chong. 2009. Isoflavonoid content of Hong Kong soy foods. J. Agric. Food Chem. 57 : 5386-5390. https://doi.org/10.1021/jf803870k
  10. Hoeck, J. A., W. R. Fehr, P. A. Murphy, and G. A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40 : 48-51. https://doi.org/10.2135/cropsci2000.40148x
  11. Hwang, Y. H. 2004. Present status and future developmental direction of soy-related industries in Korea. Kor. Soybean Digest. 21 : 28-44.
  12. Kim, E. H., S. H. Kim, J. I. Chung, H. Y. Chi, J. A. Kim, and I. M. Chung. 2006. Analysis of phenolic compounds and isoflavones in soybean seeds (Glycine max L. Merrill) and sprouts grown under different conditions. Eur. Food Res. Technol. 222 : 201-208. https://doi.org/10.1007/s00217-005-0153-4
  13. Kim, E. H., H. M. Ro, S. L. Kim, H. S. Kim, and I. M. Chung. 2012. Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean [Glycine max L. Merill] germplasms of different seed weights and origins. J. Agric. Food Chem. 60 : 6045-6055. https://doi.org/10.1021/jf300463f
  14. Kim, E. M., K. J. Lee, and K. M. Chee. 2004a. Comparison in isoflavone contents between soybean and soybean sprout of various soybean cultivars. Korean J. Nutr. 37 : 45-51.
  15. Kim, J. K., E. H. Kim, O. K. Lee, S. Y. Park, B. Lee, S. H. Kim, I. M. Park, and I. M. Chung. 2013. Variation and correlation analysis of phenolic compounds in mungbean (Vigna radiate L.) varieties. Food Chem. 141 : 2988-2997. https://doi.org/10.1016/j.foodchem.2013.05.060
  16. Kim, J. S., J. G. Kim, and W. J. Kim. 2004b. Changes in isoflavones and oligosaccharides of soybeans during germination. Korean J. Food Sci. Technol. 36 : 294-298.
  17. Kim, J. A. and I. M. Chung. 2007. Change in isoflavone concentration of soybean (Glycine max L.) seeds ar different growth stage. J. Agric. Food Chem. 87 : 496-503. https://doi.org/10.1002/jsfa.2743
  18. Kim, Y. H., Y. H. Hwang. and H. S. Lee. 2003. Analysis of isoflavones for 66 varieties of sprout beans and bean sprouts. Korean J. Food Sci. Technol.35: 568-575.
  19. Lee, S. J., J. K. Ahn, T. D. Khanh, S. C. Chun, S. L. Kim, H. M. Ro, H. K. Song, and I. M. Chung. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. J. Agric. Food Chem. 55 : 9415-9421. https://doi.org/10.1021/jf071861v
  20. Lee, S. J., P. Seguin, J. J. Kim, H. I. Moon, H. M. Ro, E. H. Kim, S. H. Seo, E. Y. Kang, J. K. Ahn, and I. M. Chung. 2010. Isoflavones in Korean soybeans differing in seed coat and cotyledon color. J. Food Compost. Anal. 23 : 160-165. https://doi.org/10.1016/j.jfca.2009.08.005
  21. Messina, M. J., V. Persky, K. D. R. Setchell, and S. Barnes. 1994. Soy intake and cancer risk: a review of the in-vitro and in-vivo data. Nutr. Cancer 21 : 113-131. https://doi.org/10.1080/01635589409514310
  22. Omoni, A. O. and R. E. Aluko. 2005. Soybean foods and their benefits potential mechanisms of action. Nutr. Rev. 63 : 272-283. https://doi.org/10.1111/j.1753-4887.2005.tb00141.x
  23. Park, S. Y., S. H. Lim, S. H. Ha, Y. Yeo, W. T. Park, D. Y. Kwon, S. U. Park, and J. K. Kim. 2013. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis). J. Agric. Food Chem. 61 : 6999-7007. https://doi.org/10.1021/jf401330e
  24. Phommalth, S., Y. S. Jeong, Y. H. Kim, and Y. H. Hwang. 2008. Isoflavone composition within each structural part of soybean seeds and sprouts. J. Crop Sci. Biotechnol. 11 : 57-62.
  25. Sarkar, F. H. and Y. Li. 2003. Soy isoflavones and cancer prevention. Cancer Investig. 21 : 744-757. https://doi.org/10.1081/CNV-120023773
  26. Setchell, K. D. R. and S. J. Cole. 2003. Variation in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling. J. Agric. Food Chem. 14 : 4146-4155.
  27. Wang, H. J. and P. A. Murphy, 1994. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42 : 1666-1673. https://doi.org/10.1021/jf00044a016
  28. Yu, O., J. Shi, A. O. Hession, C. A. Maxwell, B. McGonigle, and J. T. Odell. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63 : 753-763. https://doi.org/10.1016/S0031-9422(03)00345-5