Browse > Article
http://dx.doi.org/10.5050/KSNVN.2007.17.7.638

Median HRIR Customization via Principal Components Analysis  

Hwang, Sung-Mok (Department of Mechanical Engineering, KAIST)
Park, Young-Jin (Department of Mechanical Engineering, KAIST)
Publication Information
Transactions of the Korean Society for Noise and Vibration Engineering / v.17, no.7, 2007 , pp. 638-648 More about this Journal
Abstract
A principal components analysis of the entire median HRIRs in the CIPIC HRTF database reveals that the individual HRIRs can be adequately reconstructed by a linear combination of several orthonormal basis functions. The basis functions represent the inter-individual and inter-elevation variations in median HRIRs. There exist elevation-dependent tendencies in the weights of basis functions, and the basis functions can be ordered according to the magnitude of standard deviation of the weights at each elevation. We propose a HRIR customization method via tuning of the weights of 3 dominant basis functions corresponding to the 3 largest standard deviations at each elevation. Subjective listening test results show that both front-back reversal and vertical perception can be improved with the customized HRIRs.
Keywords
Head-related Transfer Function; Customization; Principal Components Analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cheng, C. I. and Wakerfield, G. H., 2001, 'Introduction to Head-related Transfer Functions (HRTFs): Representations of HRTFs in Time, Frequency, and Space', J. Audio Eng. Soc., Vol. 49, pp.231-248
2 Blauert, J., 1983, Spatial hearing, MIT, Cambridge, MA
3 Brungart, D. S. and Rabinowitz, W. M., 1999, 'Auditory Localization of Nearby Sources. Head-related transfer functions', J. Acoust. Soc. Am., Vol. 106, pp. 1465-1479   DOI
4 Shin, K. H. and Park, Y., 2006, 'Customization of Head-related Transfer Functions Using Principal Components Analysis in the Time Domain (A)', J. Acoust. Soc. Am., Vol. 120, p. 3284
5 Algazi, V. R., Duda, R. O., Thompson, D. M. and Avendano, C., 2001, 'The CIPIC HRTF database', In Proc. WASPAA01, New Paltz, NY, pp. 99-102
6 Dunteman, G. H., 1989, PRINCIPAL COMPONENTS ANALYSIS, Sage Publication, Inc
7 Martens, W. L., 1987, 'Principal Components Analysis and Resynthesis of Spectral Cues to Perceive Direction', Proc. Int. Computer Music Conf., pp. 274-281
8 Kistler, D. J. and Wightman, F. L., 1992, 'A Model of Head-related Transfer Functions Based on Principal Components Analysis and Minimum-phase Reconstruction', J. Acoust. Soc. Am., Vol. 91, pp. 1637-1647   DOI
9 Shimada, S., Hayashi, M. and Hayashi, S., 1994, 'A Clustering Method for Sound Localization Transfer Functions', J. Audio Eng. Soc., Vol. 42, pp. 577-584
10 Middlebrooks, J. C., 1999, 'Virtual Localization Improved by Scaling Non-individualized External-ear Transfer Functions in Frequency', J. Acoust. Soc. Am., Vol. 106, pp. 1493-1510   DOI
11 Algazi, V. R., Duda, R. O., Morrison, R. P., and Thompson, D. M., 2001, 'Structural Composition and Decomposition of HRTFs' , In Proc. WASPAA01, New Paltz, NY, pp. 103-106
12 Zotkin, D. N., Duraiswami, R. and Davis, L. S., 2002, 'Customizable Auditory Display', In Proc. Int. Conf. on Auditory Display (ICAD) , Kyoto, Japan
13 Wightman, F. L. and Kistler, D. J., 1989, 'Headphone Simulation of Free-field Listening. II: Psychophysical Validation', J. Acoust. Soc. Am., Vol. 85, pp. 868-878   DOI
14 Wightman, F. L. and Kistler, D. J., 1989, 'Headphone Simulation of Free-field Listening. I: Stimulus Synthesis', J. Acoust. Soc. Am., Vol. 85, pp. 858-867   DOI