• Title/Summary/Keyword: Primary ideals

Search Result 45, Processing Time 0.026 seconds

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

HESITANT FUZZY p-IDEALS AND QUASI-ASSOCIATIVE IDEALS IN BCI-ALGEBRAS

  • Jun, Young Bae;Roh, Eun Hwan;Ahn, Sun Shin
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.148-164
    • /
    • 2022
  • The main purpose of this paper is to apply the notion of hesitant fuzzy sets to an algebraic structure, so called a BCI-algebra. The primary goal of the study is to define hesitant fuzzy p-ideals and hesitant fuzzy quasi-associative ideals in BCI-algebras, and to investigate their properties and relations.

MORE ON THE 2-PRIME IDEALS OF COMMUTATIVE RINGS

  • Nikandish, Reza;Nikmehr, Mohammad Javad;Yassine, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.117-126
    • /
    • 2020
  • Let R be a commutative ring with identity. A proper ideal I of R is called 2-prime if for all a, b ∈ R such that ab ∈ I, then either a2 or b2 lies in I. In this paper, we study 2-prime ideals which are generalization of prime ideals. Our study provides an analogous to the prime avoidance theorem and some applications of this theorem. Also, it is shown that if R is a PID, then the families of primary ideals and 2-prime ideals of R are identical. Moreover, a number of examples concerning 2-prime ideals are given. Finally, rings in which every 2-prime ideal is a prime ideal are investigated.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

ON WEAKLY 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

  • Darani, Ahmad Yousefian;Soheilnia, Fatemeh;Tekir, Unsal;Ulucak, Gulsen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1505-1519
    • /
    • 2017
  • Assume that M is an R-module where R is a commutative ring. A proper submodule N of M is called a weakly 2-absorbing primary submodule of M if $0{\neq}abm{\in}N$ for any $a,b{\in}R$ and $m{\in}M$, then $ab{\in}(N:M)$ or $am{\in}M-rad(N)$ or $bm{\in}M-rad(N)$. In this paper, we extended the concept of weakly 2-absorbing primary ideals of commutative rings to weakly 2-absorbing primary submodules of modules. Among many results, we show that if N is a weakly 2-absorbing primary submodule of M and it satisfies certain condition $0{\neq}I_1I_2K{\subseteq}N$ for some ideals $I_1$, $I_2$ of R and submodule K of M, then $I_1I_2{\subseteq}(N:M)$ or $I_1K{\subseteq}M-rad(N)$ or $I_2K{\subseteq}M-rad(N)$.

PRIMARY IDEALS

  • CHWE, BYOUNG SONG;NEGGERS, JOSEPH
    • Journal of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.141-146
    • /
    • 1984
  • PDF