Pusan Kyðngnam Math. J. 9(1993), No. 2, pp. 347-351

NOTES ON PRIMARY IDEALS

Dongsoo Lee and Chulhwan Park

We know that a primary ideal of a commutative ring R is defined to be an ideal of R such that if $x y \in I$ and $x \notin I$,then $y^{n} \in I$ for some positive integer n. B.S. Chew and J. Neggers extended the concept to general rings in their paper[1].

In this paper we will give slightly different definitions of the strongly primary ideal of B.S. Chew and J. Neggers. We will call this w-strongly primary ideal. We will show that every w-strongly primary ideal is primary ideal in a commutative ring and a matrix ring of w-strongly primary ring is also w-strongly primary ring. Through this paper we assume that R is a ring with identity and every R-module M is unitary left R-module.

We recall the definitions of primary and strongly primary ideals of B.S. Chew and J. Neggers.

Definition [1]. Suppose R is a ring. An ideal I of R is called left primary if there is a faithful indecomposable R / I-module M. Moreover if M is both Artinian and noetherian R / I-module, then I is called left strongly primary.

It is known that every strongly primary ideal is a primary ideal in usual sense in a commutative ring and every primary ideal is a left primary ideal[1]. Usually we call a ring R left primary and left strongly primary if 0 is left primary and strongly primary ideal respectively. Since the integer ring \mathbb{Z} has no faithful noetherian and artinian \mathbb{Z} module, \mathbb{Z} is not strongly primary. Thus we know that primeness does not imply strongly primariness. Either strongly primariness does not imply primeness because $9 \mathbb{Z}$ is a strongly primary ideal of an integer ring \mathbb{Z} but not prime.

But we have the following propositions easily.

Proposition 1. Let R be a commutative principal ideal domain. Then every nontrivial prime ideal is a strongly primary ideal.
$P_{\text {roof }}$. Since R is a commutative principal domain,every nontrivial principal prime ideal I is maximal. So R / L is a field and clearly strongly primary.

Proposition 2. If R is a semisimple primary ring, then R is strong$l y$ primary (in fact R is primitive).

Proof. Let M be a faitheful indecomposable R-module. Since R is semisimple, M is semisimple. So M is simple because M is indecomposable. Thus R has a faithful indecomposable artinian and noetherian.

Proposition 3. If a left artinian ring R has no nontrivial idempotents, then R is strongly primary.

Proof. Let $M={ }_{R} R$. Then $\operatorname{End}_{R}(M) \cong R$. Since R has no nontrivial idempotents, M is indecomposable and $M=R$ is artinian and noetherian R-module.

Proposition 4. If R is semisimple, the intersection of strongly primary ideals is zero.

Proof. Let $R=\bigoplus_{\mathrm{i} \in I} I_{\mathrm{t}}$ where I_{t} is minimal left ideal and $J_{\mathrm{i}}=$ $\operatorname{ann}_{\ell}\left(I_{2}\right)=\left\{r \in R \mid r I_{2}=0\right\}$. Clearly J_{t} is two sided ideal and strongly primary for I_{1} is a faithful indecomposable artinian and noetherian
R / J_{2}-module.Clearly $\bigcap_{2 \in I} J_{2}=\{0\}$
Also we know that if R is a right Goldie ring, then the intersection of all primary ideals is zero by similar method.

The following theorem shows that if R is a left artinian primary ring and R have an injective left nonzero ideal, then R is a left strongly primary ring.

Theorem 1. Let R be a left artinian and R have an injective left nonzero ideal. Then if R is a left primary ring, R is a left strongly primary ring.

Proof. Suppose L is an injective left ideal. Then L is a direct summand of R, that is $R=L \oplus L^{\prime}$ for a suitable left ideal L^{\prime} of R. Since R is left artinian, we can refine this decomposition into an indecomposable
direct decomposition of R. Let $R=I \oplus I^{\prime}$ where a left ideal I is a direct summand of L (so I is injective) and I is indecomposable left R module. Since I is left artinian, I contains a simple left ideal J. Then I is the injective envelope of J for I is indecomposable and injective. Thus J is a unique simple left ideal of I. Since R is primary, R has a faithful indecomposable R-module M. Then there exists an element m in M such that $J m \neq 0$ for $J M \neq 0$. We can define an R-module homomorphism Φ_{m} from I into M as follows $\Phi_{m}(a)=a m$. Then $\operatorname{Ker} \Phi_{m}=\{a \mid a m=0\}$ does not contain J. So $\operatorname{Ker} \Phi_{m}=\{0\}$ for J is the unique minimal left ideal of I. Thus Φ_{m} is a monomorphism and $I m \cong I$ is an injective submodule of M. Moreover $I m$ is a direct summand of M by injectiveness of $I m$. Clearly $I m \cong M$. Thus R has a faithful indecomposable artinian and noetherian R-module M for I is left artinian and noetherian.

We define w-strongly primary ideal as following.
Definition. An ideal I of a ring R is called w-strongly primary ideal if there exits a faithful R / I-module M such that $E n d_{R / I}(M)$ is local ring and its Jacobson radical is nil ideal.

We know that if M is indecomposable artinian and noetherian R module, $E n d_{R}(M)$ is local ring and its Jacobson radical is nilpotent[2]. Thus every strongly primary ring is w-strongly primary.

The following theorems show that every cornmutative w-strongly primary ring is primary and a matrix ring of w-strongly primary ring is also w-strongly primary ring.

ThEOREM 2. Let R be a commutative ring. If R is w-strongly primary, R is primary.

Proof. Let M be a faithful R-module and $S=E n d_{R}(M)$ be local and its Jacobson radical be nil. We imbedds R in S via $T_{a}(m)=a m$ (in fact a is mapped into T_{a}). Let $a b=0$ and $b \neq 0$ in R. Then $T_{a} T_{b}=$ $T_{a b}=0$ and $T_{b} \neq 0$. So $T_{a} \in \operatorname{rad}(S)$. Since $\operatorname{rad}(S)$ is nil, $\left(T_{a}\right)^{n}=0$ for some n. Thus $\left(T_{a}\right)^{n}=0$ implies $a^{n} M=0$ for $\left(T_{a}\right)^{n}=T_{a}^{n}$. Since M is a faithful R-module, $a^{n}=0$.

THEOREM 3. R is a w-strongly primary ring iff $M_{n}(R)$ is a w strongly primary ring where $M_{n}(R)$ is (n, n) matrix ring over R.

Proof. If M is a faithful R-module such that $E n d_{R}(M)$ is local and its Jacobson radical is nil. Let $N=M \oplus \cdots \oplus M$ (n-copies) as a direct sum of groups. We define $M_{n}(R)$-action as following ;

$$
\left(r_{i j}\right)\left(m_{1}, \ldots m_{1}, \ldots m_{n}\right) \stackrel{\text { def }}{=}\left(\ldots, \sum_{j=1}^{n} r_{2 j} m_{j}, \ldots\right)
$$

Then N is a faithful $M_{n}(R)$-module. We will prove that $E n d_{R}(M) \cong$ $E n d_{M_{n}(R)}(N)$. At first we can define a ring homomorpism Ψ from $E n d_{R}(M)$ into $E n d_{M_{n}(R)}(N)$ as following ;

$$
\Psi(\sigma)\left(m_{1}, \ldots, m_{2}, \ldots, m_{n}\right) \stackrel{\text { def }}{=}\left(\sigma\left(m_{1}\right), \ldots, \sigma\left(m_{\imath}\right), \ldots, \sigma\left(m_{n}\right)\right)
$$

for every $\sigma \in E n d_{R}(M)$. By simple calculation, we know that $\Psi(\sigma)$ is an element of $E n d_{M_{n}(R)}(N)$ and Ψ is a ring homomorphism. On the other hand if τ is any $M_{n}(R)$-module homomorphism of N.

Since

$$
\begin{aligned}
\tau\left(0, \ldots, m_{i}, 0, \ldots, 0\right) & =\tau\left(E_{z}\left(0, \ldots, m_{i}, 0, \ldots, 0\right)\right. \\
& =E_{z s} \tau\left(0, \ldots, m_{i}, 0, \ldots, 0\right) \\
& =E_{u z}\left(m_{1}^{\prime}, \ldots, m_{i}^{\prime}, \ldots, m_{n}^{\prime}\right) \\
& =\left(0, \ldots, 0, m_{\imath}^{\prime}, 0, \ldots, 0\right),
\end{aligned}
$$

we have $\tau\left(0 \ldots, m_{2}, 0, \ldots, 0\right)=\left(0, \ldots, m_{i}^{\prime}, 0, \ldots, 0\right)$ where E_{i}, is the matrix whose element of \imath-th row and j-th column is 1 and otherwise is 0 . For each i, we can define σ_{2} as $\sigma_{t}(m)=\pi_{t} \tau \iota_{2}(m)$ where ι_{2} is i-th injection from M into N and π_{2} is i-th projection from N into M. Then clearly σ_{1} is R-module homomorphism of M.

Since

$$
\begin{aligned}
\sigma_{2}(m) & =\pi_{i} \tau \iota_{2}(m) \\
& =\pi_{i} \tau\left(E_{i} \iota_{j}(m)\right) \\
& =\pi_{i} E_{i j} \tau \iota_{j}(m) \\
& =\pi_{i} E_{i j}\left(0, \ldots, \sigma_{3}(m), \ldots, 0, \ldots, 0\right) \\
& =\sigma_{3}(m)
\end{aligned}
$$

we have $\sigma_{i}=\sigma_{j}=\sigma$ for every $i \neq j$. Thus $\tau=\Psi(\sigma)$. It is clear that Ψ is one to one. Hence Ψ is an isomorphism and $E n d_{R}(M) \cong$ $\operatorname{End}_{M_{n}(R)}(N)$.

Conversely N is a faithful $M_{n}(R)$-module. Define $N_{2}=E_{\imath} N$. Then $N=N_{1} \oplus, \ldots, \oplus N_{n}$ as a direct sum of abelian groups and $N_{2} \cong N_{3}$ for $i \neq j$. Each N_{2} is an R-module via $r n=r E_{22} n$ for $n \in N_{2}$. Clearly $M=N_{\mathrm{t}}$ is a faithful R-module and $E n d_{R}(M) \cong \operatorname{End}_{M_{n}(R)}(N)$. Thus theorem is proved.

References

1. B.S. Chew and J. Neggers, Prımary Ideals, Korean Math Soc. (2)20 (1984), 141-146
2. T.Y.Lam, A first Course in Noncommutatıve Rings, Sprtnger-Verlag, New York, 1990.

3 T.W.Hungerford, Algebra, Springer-Verlag, New York, 1970.

Department of Mathematics
College of Natural Science
University of Ulsan
Ulsan 680-749,Korea

