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PRIMARY IDEALS

BYOUNG SONG CHWE AND JOSEPH NEGGERS

In the theory of commutative rings with identity R one usually defines
a primary ideal to be an ideal I of R such that if zyeI and x& 7, then
yre for some integer n>1. The following types of ideals in arbitrary
rings with identity are closely related to primary ideals in the commu-
tative case and seem to have many of the properties one would want
primary ideals in general rings to have. In this note we work exclusively
with left unitary R-modules. It is clear that one has similar results for
right R-modules. We give the definitions and prove several theorems
and propositions to illustrate the point made above.

DEFINITION. Suppose R is a ring. An ideal I of R is(eft) primary
if there is a faithful indecomposable R/I-module M. If the module M
can in addition be chosen such that M is both Artinian and Noetherian,
then I is a strongly (left) primary ideal.

If R is a commutative ring (with identity), then we have families
F,. Fy and F3;, where: F; is the collection of all strongly primary ideals
of R, F, is the collection of all primary ideals of R and F; is the
collection of all (left) primary ideals of R.

THEOREM 1. If R is a commutative ring and if the families Fi, F,
and F5 are as defined, then we have inclusions: F1S FoC Fa,

Proof. Suppose I is a strongly primary ideal of R, and suppose M
is a faithful indecomposable Artinian and Noetherian R/I-module.

Suppose that zy&€l, with &I and ye ] for all integers n>1. Given
r€R, r induces an R/I-endomorphism of M by left multiplication of
elements of M by #=r-+I when R is commutative. Now, by Fitting’s
Lemma M=35"M®P for some integer n>1 and thus since y*&I and
since M is indecomposable M=3"M=5M. But then it follows that
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ZM=Z3M=0, contradicting the fact that M is a faithful R/I-module.
Hence I is a primary ideal of R.

Now suppose that I is a primary ideal of R and suppose that we
consider R/I=M as a module over itself. M is a faithful R/I-module.
If M is not indecomposable, M=L,®L,, where the L; are ideals of
R/I. Hence 1=e;+e;, with L;=Me; while ¢; and ¢, are a pair of
orthogonal idempotents. If #=e; and 5=e,, then zyel, z&l, y&l,
contradicting the fact that 7 is a primary ideal. Thus M is indecomp-
osable and 7 is a left primary ideal.

Thus F,C F,C F5 as claimed.

Using the Krull-Schmidt Theorem we have some immediate results
on intersections. Suppose that I is an ideal of R such that there is a
faithful R/I-module M which is both Artinian and Noetherian. We
shall refer to such an ideal as a Krull-Schmidt ideal of R. The module
M may not be unique, but it does yield an intersection theorem for
Krull-Schmidt ideals in terms of strongly primary ideals.

THEOREM 2. Let I be a Krull-Schmidt ideal of the ring R with
associated faithful Artinian and Noetherian R/I-module M. Then M
determines I as the unique intersection of a finite number of strongly
primary ideals of R.

Proof. If M=M,®---®M,=N;D-- DN,, where the modules M; and
N; are indecomposable for all i and j, then by the Krull-Schmidt
theorem r=s, and M;=N; for all i/, without loss of generality.

Now, since the isomorphism is also R-isomorphism, it follows that
if I; is the annihilator of M; in R and if J; is the annihilator of N;
in R, then I;=.,

Since M is a faithful R/I-module, it follows that I=I NI, N -+ NI,
Since each M; is a faithful indecomposable R/I,-module, which is Artinian
and Noetherian, it follows that I; is a strongly primary ideal of R,

If I,<1I; for some i and j, then we may adjust M by removing the
module M; altogether. Having done so, we have removed the ‘embedded
component’ I; in the intersection. Continuing this we may always take
M such that I=I,N N1, is an irredundant intersection.

The following propositions are offered in the nature of observations
and are proven easily.
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PROPOSITION 1. If R is a ring and if I is a primary ideal such that
R/I has finite characteristic m, then m=p"* for some prime p and some
integer n>1.

PROPOSITION 2. If P is a left primitive ideal of R, then P is a
strongly primary ideal of R.

PROPOSITION 3. If I is an ideal such that R/I has no divisors of zero,
then I is a primary ideal of R.

A Steinitz ring is a local ring with a radical which is either left or
right vanishing, i.e., given a sequence {zx}:, of elements in the
radical, there is an index = such that z,-z,-;-...-2;=0(left vanishing)
or zj° 23 ...-x,=0 (right vanishing). The quotient rings R/I, where I
is a strongly primary ideal have centers which are subrings of Steinitz
rings.

THEOREM 3. Let I be a strongly primary ideal of the ring R and let
M be an associated faithful indecomposable Artinian and Noetherian R/I
-module M. Then E=Homy, (M, M) is a right and left Steinitz ring
and if C is the center of R/I, there is a natural inclusion CCE.

Proof. By Fitting’s Lemma it follows that E is a local ring whose
radical is a nil ideal. We map the elements of C to the corresponding
left multiplications on M. Since M is a faithful module, this mapping
is an injection. Since left multiplication by elements in C yields a coll-

ection of elements in E, the conclusion follows provided we demonstrate
that E is a Steinitz ring.

Suppose N#0, and N is a submodule of M. If $(N)=N for ¢<E,
then ¢*(N)=N and ¢ is not nilpotent. Hence ¢ is a unit of E. Suppose
that {¢;}¢-1 is a sequence of elements in the radical of E. Then MDD
& (M) Doy (M) D--+ is a properly descending chain of submodules,
and thus since M is Artinian, there is an integer n such that ¢,g, -+
61(M)=0. Hence, ¢, -+ $1=01in E, and E is a left Steinitz ring. Also
M2¢; (M) 2¢109.(M) 2¢10:03(M) 2 -+« implies that there is an integer
n such that ¢igads - ¢, (M) =¢1Bss *** $pPn+1(M). Then ¢y -+ ¢, (1—
¢n+1) (M) =0. Since 1—¢,+; is a unit of E, (1—¢,+1) (M)=M, and
10:0,M =0. Hence ¢1z ... $,=0 and E is a right Steinitz ring also.

COROLLARY 1. The radical J of the ring E in Theorem 3 is nilpotent.
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Proof. Consider the following sequence of sub-modules of M,
TM>J2M>J3SM>J4M > -~

since all these are R/I modules and since M is Artinian, there is an
integer n such that J*M=J*"1M, If J*M+0, we have a map f from
J*M to J*M and a map g of J*M to J such that

m=g(m) « f(m).
If we define m;=m for some nonzero element = of J*M and m;+y=F (m;)
then g(my) g (m2) g (m3) g(m;ym;=m; for each i. This is a contradiction
because J is a Steinitz ring,
COROLLARY 2. Let I be a Krull-Schmidt ideal of the ring R. Let C

be the center of R/I, Then C is a subring of a finite direct sum of
Steinitz rings.

Proof. Let M=M®...®M, and let I=I;N...N 1, be as in the proof
of Theorem 2. Inject C into E(®...@E,, where E;=Homg ;,(M;, M;)
is a Steinitz ring by Theorem 3. The corollary follows.

Since the center of a Steinitz ring is a Steinitz ring, and since the
ring C is in the center of the ring E via the embedding given in The-
orem 3, we may require in addition that C can be included in acomm-
utative Steinitz ring (resp. a finite direct sum of commutative Steinitz
rings).

Proofs of proposition 4 and theorem 4 have been provided for com-
pleteness, although they follow rather directly.

PROPOSITION 4. Suppose M is a faithful indecomposable R-module.
Suppose that R, is the complete ring of nXn matrices with coefficients
in R, and suppose that N is the R,~module with elements (my, ..., m,),
m; €M, addition componentwise and R,-action givern by

(ri.i) (mly seey mn) = (wly sy wn)
were
w;= a1 Fijm;.
Then N is a faithful indecomposable R,~module.
Proof. If (r,-,-) N=0, then

(7‘;'.:') (mb 0, ..., 0) = (rumy, ... fn1m1) =0,
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implies ryy=ro1= ** =r,,1=0.
Similarly, r;;=0 for all i and j, and thus N is a faithful R,~module.

If A is an R,~submodule of N and if (my,...,m,) €A, then for any
permutation = of (1,...,n) we also have (m;, ..., me») €A. Thus if
B is the collection of first components of elements of A, then B is an
R-submodule of M. Furthermore, if N=A4,PA,, and if B; is associated
with A;, then M=B;®B,. It follows that if M is indecomposable then
N is indecomposable as an R,~module and conversely.

If N is an R,~module, let subgroups N; be defined by N,=E;N,
where E;; is the matrix with 1 in position (4,7) and 0’s elsewhere.
Then I=E;+ -+ +E,,, vields a decomposition N=N;@® --- &N, of N as
a direct sum of abelian groups. The groups N; are all isomorphic as
abelian groups, since we may map N; to N; via permutation matrices.
Define an R-action on N; via r - n=rE;n for n& N, Now, if Pis a
permutation matrix, then (rI1)Pn=P - rIn==Pr - n, and so the R-modules
N; are also R-isomorphic. Let M=N;= .-- =N, and construct the R,~
module associated with M as in proposition 4. It follows that M and
N are isomorphic R,~modules.

THEOREM 4. Suppose that R is a ring and I is an ideal of R. Let
R, be the complete ring of nXn matrices with coefficients in R. Then
I, is an ideal of R. Conversely, if J is any ideal of R,, then J=I,
for some ideal I of R. If 1 is a primary ideal then I, is a primary
ideal. If I is a strongly primary ideal then I, is a strongly primary
ideal. The converses of the last two statements are also true.

Proof. 1f M is a faithful indecomposable R/I module, then there
exists a faithful indecomposable (R/I),-module N as constructed in the
proof of preposition 4. Conversely, if N is a faithful indecomposable
(R/I),~module, then there exists a faithful indecomposable R/I-module
M as constructed in the discussion following proposition 4. Hence I is
a primary ideal if and only if I, is a primary ideal. Since the R-module
M is both Artinian and Noetherian if and only if the associated R,-
module N is both Artinian and Noetherian, if follows that I is strongly
primary if and only if I, is strongly primary.

We close with a last result analogous to the usual results in the case
of commutative rings.
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THEOREM 5. Let R be a ring. Suppose that z*+#0. Then there is a
primary ideal I such that <1,

Proof. Let P be a left ideal of R which is maximal with respect to
being disjoint from the set {z7}¢,_;. Consider the left R-module M=
(P+Rz) /P, and let I be the annihilator of the R-module M. Then M
is a faithful R/I-module.

Suppose that M=A®B, and let L; and L, be the complete inverse
images in R of A and B respectively. Then L,;+ L,=P-+ Rz, where both
L; and L, are left ideals containing P, while L, N Ly=P. If L;#P and
L,%P, then for some integer #,2*&L; Ly=P, a contradiction. Thus
M is an indecomposable R/I-module, and I is a primary ideal.

Now if z<1, then z(P+Rz) P, and thus z3€P, a contradiction.
Hence <1, and the theorem follows. '

COROLLARY 1. If I is the intersection of all primary ideals of the
ring R, then I is a nil ideal.
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