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PRIMARY IDEALS

BYOUNG SONG CHWE AND ]OSEPH NEGGERS

In the theory of commutative rings with identity R one usually defines
a primary ideal to be an ideal I of R such that if xyEI and x$.I, then
yn E I for some integer n ~ 1. The following types of ideals in arbitrary
rings with identity are closely related to primary ideals in the commu­
tative case and seem to have many of the properties one would want
primary ideals in general rings to have. In this note we work exclusively
with left unitary R-modules. It is clear that one has similar results for
right R-modules. We give the definitions and prove several theorems
and propositions to illustrate the point made above.

DEFINITION. Suppose R is a ring. An ideal I of R is(left) primary
if there is a faithful indecomposable RI I-module M. If the module M
can in addition be chosen such that M is both Artinian and Noetherian,
then I is a strongly (left) primary ideal.

If R is a commutative ring (with identity), then we have families
F 1• F 2 and F 3, where: F 1 is the collection of all strongly primary ideals
of R, F 2 is the collection of all primary ideals of Rand F 3 is the
collection of all (left) primary ideals of R.

THEOREM 1. If R is a commutative ring and if the families F h F2

and F 3 are as defined, then we have inclusions: P\-;;;;;.F2 -;;;;;.F3•

Proof. Suppose I is a strongly primary ideal of R, and suppose M
is a faithful indecomposable Artinian and Noetherian RII-module.

Suppose that xy E I, with x $. I and yn $ I for all integers n~ 1. Given
rE R, r induces an RlI-endomorphism of M by left multiplication of
elements of M by r=r+ I when R is commutative. Now, by Fitting's
Lemma M=ynMfBP for some integer n~l and thus since yn$I and
since M is indecomposable M=ynM=yM. But then it follows that
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xM=xyM=O, contradicting the fact that M is a faithful RII-module.
Hence I is a primary ideal of R.

Now suppose that I is a primary ideal of R and suppose that we
consider RII=M as a module over itself. M is a faithful RlI-module.
If M is not indecomposable, M=L1(J)L2, where the Li are ideals of
RI!. Hence I=e1+e2, with Li=Mei' while e1 and e2 are a pair of
orthogonal idempotents. If x=e1 and y=e2' then xyeI, x$I, y$I,
contradicting the fact that I is a primary ideal. Thus M is indecomp­
osable and I is a left primary ideal.

Thus F 1 r;;;.F2 r;;;.Fs as claimed.

Using the Krull-Schmidt Theorem we have some immediate results
on intersections. Suppose that I is an ideal of R such that there is a
faithful RII-module M which is both Artinian and Noetherian. We
shall refer to such an ideal as. a Krull~Schmidt ideal Qf R. The module
M may not be unique, but it does yield an intersection theorem for
Krull-Schmidt ideals in terms of strongly primary ideals.

THEOREM 2. Let I be a Krull-Schmidt ideal of the ring R with
associated faithful Artinian and Noetherian RlI-module M. Then M
determines I as the unique -intersection of a finite number of strongly
primary ideals of R.

Proof. If M=M1(J)···(J)M r=N1(J)···(J)N" where the modules Mi and
N j are indecomposable for all i and j, then by the Krull-Schmidt
theorem r=s, and Mi;;;;.Ni for all i, without loss of generality.

Now, since the isomorphism is also R-isomorphism, it follows that
if I i is the annihilator of Mi in R and if Ji is the annihilator of Ni
in R, then Ii=Ji•

Since M is a faithful RII-module, it follows that /=11n12n... nI r•

Since each Mi is a faithful indecomposable RlIi-module, which is Artinian
and Noetherian, it follows that I i is a strongly primary ideal of R.

If Iir;;;.I,j for some i and j, then we may adjust M by removing the
module Mj altogether. Having done so, we have removed the 'embedded
component' I j in the intersection. Continuing this we may always take
M such that I=I1n ..• nIr is an irredundant intersection.

The following propositions are offered in the nature of observations
and are proven easily.



Primary ideals 143

PROPOSITION 1. If R is a ring and if I is a primary ideal such that
RI I has finite characteristic m, then m = pn for some prime p and some

integer n ~ 1.

PROPOSITION 2. If P is a left primitive ideal of R, then P is a

strongly primary ideal of R.

PROPOSITION 3. If I is an ideal such that RI I has no divisors of zero,

then I is a primary ideal of R.

A Steinitz ring is a local ring with a radical which is either left or
right vanishing, i. e., given a sequence {Xi} 1=1 of elements in the
radical, there is an index n such that X n·Xn-I· ... ·xI=O(1eft vanishing)
or Xl' X2' •••• X n=0 Cright vanishing). The quotient rings RII, where I
is a strongly primary ideal have centers which are subrings of Steinitz
rings.

THEOREM 3. Let I be a strongly primary ideal of the ring R and let
M be an associated faithful indecomposable Artinian and Noetherian RII

-module M. Then E=HomR//CM, M) is a right and left Steinitz ring

and if C is the center of RI I, there is a natural inclusion er;;;;. E.

Proof. By Fitting's Lemma it follows that E is a local ring whose
radical is a nil ideal. We map the elements of C to the corresponding
left multiplications on M. Since M is a faithful module, this mapping
is an injection. Since left multiplication by elements in C yields a colI·
ection of elements in E, the conclusion follows provided we demonstrate
that E is a Steinitz ring.

Suppose N-=I=-O, and N is a submodule of M. If ifJCN) =N for ifJEE,
then if/'CN) =N and ifJ is not nilpotent. Hence ifJ is a unit of E. Suppose
that {ifJi} 1=1 is a sequence of elements in the radical of E. Then M=:J
ifJI CM) =:JifJ2ifJI CM) =:J .•• is a properly descending chain of submodules,
and thus since M is Artinian, there is an integer n such that ifJnifJn-I'"

ifJI CM) =0. Hence, ifJn .•• ifJI =0 in E, and E is a left Steinitz ring. Also
M"2 ifJI CM) d. ifJlifJ2 CM) "2 ifJlifJ2ifJ3 CM) d. .•• implies that there is an integer
n such that ifJlifJ2ifJ3 .•• ifJn CM) =ifJlifJ2ifJ3 ... ifJnifJn+1 CM). Then ifJlifJ2 ... ifJn C1­
ifJn+l) CM) =0. Since 1-ifJn+1 is a unit of E, C1-ifJn+1) CM) =M, and
ifJlifJ2ifJnM=0. Hence ifJlifJ2". ifJn=O and E is a right Steinitz ring also.

COROLLARY 1. The radical J of the ring E in Theorem 3 is nilpotent.
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Proof. Consider the foJIowing sequence of sub-modules of M,

JM2J2M2J3M2J4M2···

since all these are RI] modules and since M is Artinian, there is an
integer n such that JnM=Jn+1M. If JnM=I=O, we have a map f from
JnM to JnM and a map g of JmM to J such that

m=g(m) • f(m).

If we define ml=m for some nonzero element m of JnM and mi+1 f(mi)
then i(ml)g(m2)g(mS)g(mi)mi=ml for each i. This is a contradiction
because J is a Steinitz ring.

COROLLARY 2. Let I be a Krull-Schmidt ideal of the ring R. Let C
be the center of RI1. Then C is a subring of a finite direct sum of
Steinitz rings.

Proof. Let M=M1EB ...EBMr and let 1=/1 n... nl r be as in the proof
of Theorem 2. Inject C into E 1EB ... EBEn where Ei=HomR/I;(Mi, Mi)
is a Steinitz ring by Theorem 3. The corollary follows.

Since the center of a Steinitz ring is a Steinitz ring, and since the
ring C is in the center of the ring E via the embedding given in The­
orem3, we may require in addition that C can be included in acomm­
utative Steinitz ring (resp. a finite direct sum of commutative Steinitz
rings) .

Proofs of proposition 4 and theorem 4 have been provided for com­
pleteness, although they follow rather directly.

PROPOSITION 4. Suppo~e M is a faithful indecomposable R-module.
Suppose that Rn is the complete ring of nXn matrices with coefficients
in R, and suppose that N is the Rn-module with elements (m!> ... , mn),
miEM, addition componentwise and Rn-action given by

were

Then N is a faithful indecomposable Rn-module.

Proof. If (ri,;) N=O, then

(rij) (m!> 0, ... ,0) = (rnm!> ... , rnlml) =0,



implies rll =r21 = ... =rnl=0.
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Similarly, rij=O for all i and j, and thus N is a faithful Rn-module.

If A is an Rn-submodule of N and if (m!> ... , mn) EA, then for any
permutation n of (1, ... , n) we also have (mn(l), ... , m"Cn») EA. Thus if
B is the collection of first components of elements of A, then B is an
R-submodule of M. Furthermore, if N=A1EBA 2, and if B; is associated
with Ai, then M=B 1EBB2• It follows that if M is indecomposable then
N is indecomposable as an Rn-module and conversely.

If N is an Rn-module, let subgroups N; be defined by N;=EiiN,
where E ii is the matrix with 1 in position (i, i) and 0' s elsewhere.
Then I=E ll + ... +Enm yields a decomposition N=N1EB". EBNn of N as
a direct sum of abelian groups. The groups Ni are all isomorphic as
abelian groups, since we may map Ni to N j via permutation matrices.
Define an R-action on Ni via r . n=rEiin for nE Ni' Now, if P is a
permutation matrix, then (r1)Pn=P . rIn=Pr . n, and so the R-modules
Ni are also R-isomorphic. Let M=N1= '" =Nn, and construct the R n­
module associated with M as in proposition 4. It follows that M and
N are isomorphic Rn-modules.

THEOREM 4. Suppose that R is a ring and I is an ideal of R. Let
Rn be the complete ring of n X n matrices with coefficients in R. Then
In is an ideal of R. Conversely, if J is any ideal 0/ R m then J=In
for some ideal I of R. If 1 is a primary ideal then In is a primary
ideal. If I is a strongly primary ideal then In is a strongly primary
ideal. The converses of the last two statements are also true.

Proof. If M is a faithful indecomposable RI I module, then there
exists a faithful indecomposable (RI1) n-module N as constructed in the
proof of prt,)position 4. Conversely, if N is a faithful indecomposable
(RI1) n-module, then there exists a faithful indecomposable RII-module
M as constructed in the discussion following proposition 4. Hence I is
a primary ideal if and only if In is a primary ideal. Since the R-module
M is both Artinian and Noetherian if and only if the associated Rn­

module N is both Artinian and Noetherian, if follows that I is strongly
primary if and only if In is strongly primary.

We close with a last result analogous to the usual results in the case
of commutative rings.
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THEOREM 5. Let R be a ring. Suppose that x n =1= O. Then there is a
primary ideal I such that x El: I.

Proof. Let P be a left ideal of R which is maximal with respect to
being disjoint from the set {xn} '"n~l. Consider the left R-module M=
(P+Rx) lP, and let I be the annihilator of the R-module M. Then M
is a faithful RII-module.

Suppose that M=AEBB, and let L1 and Lz be the complete inverse
images in R of A and B respectively. Then L 1+Lz=P+Rx, where both
L 1 and L z are left ideals containing P, while L 1 nLz=P. If L 1=l=P and
Lz~P, then for some integer n, x n EL1 nLz=P, a contradiction. Thus
M is an indecomposable RII-module, and I is a primary ideal.

Now if xEI, then x (P+Rx) r;;;.p, and thus x 3 EP, a contradiction.
Hence x El: I, and the theorem follows.

CoROLLARY 1. If I is the intersection of all primary ideals of the
ring R, then I is a nil ideal.
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