• Title/Summary/Keyword: Primary energy

Search Result 1,780, Processing Time 0.022 seconds

Temperature Dependent Creep Properties of Directionally Solidified Ni-based Superlloy CM247LC (일방향 응고 니켈기 초내열 합금 CM247LC의 온도에 따른 크리프 특성)

  • Choi, Baig-Gyu;Do, Jeonghyeon;Jung, Joong Eun;Seok, Woo-Young;Lee, Yu-Hwa;Kim, In Soo
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.505-515
    • /
    • 2021
  • Creep properties of directionally solidified Ni-based superalloy CM247LC under various temperature and stress conditions have been investigated. In the heat-treated specimen, some portion of eutectic γ-γ' remained, and uniform cubic γ' was observed in the dendrites. At low temperature (750℃) and high stress condition, a large amount of deformation occurred during the primary creep, while the tertiary creep region accounted for most of the creep deformation under high temperature and low stress condition. γ' particles are sheared by dislocation dissociated into super lattice partial dislocations separated by stacking faults at 750℃. No stacking faults in γ' were found at and above 850℃ due to the temperature dependence of the stacking fault energy. Raft structure of γ' was found after creep test at high temperature of 950℃ and 1000℃. At 850℃, the deformation mechanism was shown to be dependent on the stress condition, and so rafting was observed only under low stress condition.

Autonomic Nerve Change after Loess Bedding Radiating Far-infrared ray and energy (원적외선에너지 방출 황토침구 사용 후의 자율신경 변화에 대한 연구)

  • Lee, Ku Yeon;Lee, Hyung H.;Hahm, Suk Chan
    • Journal of Naturopathy
    • /
    • v.9 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the changes in the autonomic nervous system of the human body after the use of ocher bedding radiating far-infrared rays to 15 insomnia subjects. Methods: Changes of autonomous nerve in the subjects after using loess bedding estimated by heart rate variability. Results: The mean HF before the use of ocher bedding was 220.8 msec2, and the mean after use decreased to 5.1 msec2. The average value of LF before use was 418.1 msec2, and the mean after use decreased to 5.2 msec2. The average before use of the VLF was 1463.3 msec2, and the average after use dropped to 6.8 msec2. The average value of TP before use was 977.3 msec2, and the average after use dropped to 6.7 msec2. The decrease in postoperative values of all four items was statistically significant, and the high value of the subjects before use inferred to be the reason that all of the subjects had high stress and anxiety due to their long-term sleep disorder. There was no significant difference in the pulses of the subjects before the use of the bedding. SDNN and RMSSD were not significantly different before and after use. Conclusions: Autonomic nerves HF, LF, VLF, TP frequency is evaluated to be affected by the investigation of far-infrared radiation that occurs ocher. This research data regarded as high value as primary data in this field.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging (초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구)

  • Kim, Jongmin;Gwon, Yeonghwa;Park, Yelim;Kim, Dongsu;Kwon, Jae Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong;Shuai Che;Congying Xie;Lan Wu;Xinyu Zhang;Lin Tian;Chan Liu;Hongbo Li;Guoying Du
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2023
  • Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

A Real Situation Experimental Study on The Thermal Protection Performance of Firefighter Clothes and Gloves (소방방화복 및 소방장갑의 열 보호 성능에 대한 실제 화재 실험 연구)

  • Lee, Won Jae;Kang, Gu Hyun;Jang, Yong Soo;Kim, Wonhee;Choi, Hyun Young;Kim, Jae Guk;Kim, MinJi;Seo, Kyo;kim, Do hee;Lee, Joo-young;Choi, Jung Yoon
    • Journal of the Korean Burn Society
    • /
    • v.21 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • Purpose: This study aimed to evaluate the thermal protective function of firefighter clothes and gloves through real scale fire simulations. Methods: Firstly, the fire simulation by real scale flame was performed for firefighter clothes. A manikin equipped with firefighter clothes was directly exposed to flames which energy average is 84 Kw/m2. for 22 seconds. Heat flux gauges attached on the body measured surface temperature elevation. Secondly, we also performed the other fire simulation by hot plate exposure to firefighter gloves. Firefighter gloves with heat flux gauges exposed hot plate which temperature is 300℃ in both dry and moist conditions. Primary outcome was surface temperature change of manikin body (first simulation) and hand (second simulation) over times. Results: In the first flame simulation, the surface temperature of face and shoulders elevated more rapidly comparing with the other body surface area when initial period of flame shutter open. After 18sec of shutter open, the surface temperature of upper trunk elevated rapildy. After shutter closure, high surface temperature kept continuously on right side of face and left shoulder. In the second hot plate simulation, fingers and palms showed higher surface temperature than the other areas of hands in the both dry and wet conditions. Conclusion: This study suggests that the real scale flame enables firefighter clothes to lose their heat protective function suddenly after 18 seconds. Additionally, the protective function of firefighter gloves were relatively weaker in the palmar side of fingers than the other parts of hand. There should be additional study for evaluate thermal protection performance of firefighter clothes. And, further effort for reinforce palmar side of fingers of firefighter gloves should be done.

Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health - A review

  • Ali, Qasim;Ma, Sen;La, Shaokai;Guo, Zhiguo;Liu, Boshuai;Gao, Zimin;Farooq, Umar;Wang, Zhichang;Zhu, Xiaoyan;Cui, Yalei;Li, Defeng;Shi, Yinghua
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1461-1478
    • /
    • 2022
  • The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.

A Study on the Taegeuk in Daesoon Thoughts (대순사상의 태극에 관한 연구 - 주자의 태극과 비교를 중심으로 -)

  • Choi, Chi-bong
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.23
    • /
    • pp.385-429
    • /
    • 2014
  • This thesis strives to identify the peculiarities of Taegeuk (the yin-yang) and the relationships of Ri (reason/cause), Ki (Energy) and Do (duty). The Taegeuk is related with the Sangjekwan (highest ruling entity), Rikiron (noble theory) and the Boncheron (ontology) of the Daesoon Sasang (Daesoon Thoughts) which therefore is a priority research topic. Although said, due to the lack of original materials and the difficulty to understand the topic, the research is insignificant. Within chapter II of this thesis, the concept of the Taegeuk, the Rigi and Do from the perspective of Juja is observed. In chapter III, the relationship of Moogeuk and the Taegeuk which is mentioned in the foundation origin of the Daesoonjinrihoe. In addition, the Taegeuk and Eumyang's noble perspectives are observed through the comparison of Juja and Daesoon Sasang. In chapter IV, the aspects of Taegeuk's supervision is observed through the noumenality of the Taegeuk which is shown in the Daesoon Sasang along with the concept of mythology. Within the overall context, the Daesoon Sasang's ontology has similar structures with Juja's Taegeuk. This can be stated that Jojeongsan who had found the system of doctrine had not acknowledged Juja's theories but have rather interpreted Kangjeungsan's ontology in a Neo-Confucianism to better let the people understand. This can be observed as expediential teachings. The metaphysical Ri and the physical Ki's separation, and the relationship of matters and functions of the Taegeuk and Do can be stated to be similar within an overall outline in the aspect of the Rikiron. The Taegeuk becomes the primary figure whilst explaining Daesoon Sasang's Ri/Ki/Do and also becomes the Soiyeon (such reasons). Extreme Do is drawn from the Taegeuk and as Do resembles the trend of the Taegeuk, it is referred as the origin of all the things in the universe. However, Juja vigorously tried to witness God's notions in a principled, atheistic way. However, the main principle is regarded as divine in the aspect of the universe's functions and effects in the Daesoon Sasang. The personal Sangjekwan which embodies these profound and mysterious Taegeuk, is Daesoon Sasang's peculiarity which cannot be found in Neo-Confucianism. Therefore, in the Daesoon Sasang, both the order and character are being regarded in the ontology through personal divine.

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.