• Title/Summary/Keyword: Primary beam

Search Result 390, Processing Time 0.031 seconds

A Study on the Hysteretic Behavior of High Strength Steel Fiber Reinforced Concrete Beam-Column Joint (강섬유 보강 고강도 철근 콘크리트 보-기둥 접합부의 이력 거동에 관한 연구)

  • 오경남;이정한;유영찬;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.533-536
    • /
    • 1999
  • The primary purpose of this study is to investigate experimentally the effect of steel fiber reinforcement on the total energy dissipation capacity of R/C flexural members and to make a contribution to the construction of 40~60 story R/C high rise building by developing the new materials and reinforcing details which can improve the seismic performance of high-strength R/C beam-column joints. Experimental research was carried out on 4 type specimen under cyclic loading. Main variables are steel fiber reinforcement, intermediate reinforcements and yield strength of rebars. From the test results, steel fiber reinforcement can improve the ductility of R/C flexural members.

  • PDF

Shear Tests for Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) Beams with Shear Reinforcement

  • Lim, Woo-Young;Hong, Sung-Gul
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.177-188
    • /
    • 2016
  • One of the primary concerns about the design aspects is that how to deal with the shear reinforcement in the ultra-high performance fiber reinforced concrete (UHPFRC) beam. This study aims to investigate the shear behavior of UHPFRC rectangular cross sectional beams with fiber volume fraction of 1.5 % considering a spacing of shear reinforcement. Shear tests for simply supported UHPFRC beams were performed. Test results showed that the steel fibers substantially improved of the shear resistance of the UHPFRC beams. Also, shear reinforcement had a synergetic effect on enhancement of ductility. Even though the spacing of shear reinforcement exceeds the spacing limit recommended by current design codes (ACI 318-14), shear strength of UHPFRC beam was noticeably greater than current design codes. Therefore, the spacing limit of 0.75d can be allowed for UHPFRC beams.

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

Flexural bond strength behaviour in OPC concrete of NBS beam for various corrosion levels

  • Shetty, Akshatha;Venkataramanaa, Katta;Babu Narayan, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.81-93
    • /
    • 2014
  • Corrosion is one of the primary reasons why structures have limited durability. The present investigation is carried out to study the behavior of RC (Reinforced Concrete) structural members subjected to corrosion. Experimental investigations were carried out on National Bureau of Standard (NBS), RC beam specimens made of Ordinary Portland Cement (OPC) concrete. Load versus deflection behaviour was studied for different levels of corrosion i.e., 2.5%, 5%, 7.5% and 10%. It is observed that for every percentage increase in corrosion level, there is about 1.6% decrease in load carrying capacity. Also as the amount of corrosion increases there is a reduction in bond stress.

Measurements of Nonlinearity in homodyne interferometer (Homodyne interferometer의 Non I inear ity 측정)

  • 김종윤;엄태봉;정규원;최태영;이건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.55-59
    • /
    • 2000
  • Nonlinearity is one of the primary causes of error in precision length measurement using laser interferometer. It arises periodically. The periodical nonlinearity usually ranges from sub-naometre to several namertres. In the homodyne interferometer, it results from a number of factors including polarization mixing, imperfect optical clement, unequal gain of detectors, misalignment of axes between input beam and beam splitter. In this paper, we described a method for measuring and compensating the nonlinearity of homodyne interferometer using the elliptical least-square fitting technique associated with electric method and experimental results in one frequency polarization interferometer.

  • PDF

Thermally Induced Vibration Analysis of Flexible Spacecraft Appendages (위성체 유연구조물의 진동 해석)

  • Yoon, Il-Soung;Kim, Gu-Sun;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1216-1221
    • /
    • 2000
  • Thermally induced vibration response of composite thin walled beams is investigated. The thin-walled beam model incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, 'rotary inertia' and anisotropy of constituent materials. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferentially uniform system(CUS) configuration are exploited in connection with the structural coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated.

  • PDF

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Multifield Variational Finite Element Sectional Analysis of Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2017
  • A multifield variational formulation is developed for the finite element (FE) cross-sectional analysis of composite beams. The cross-sectional warping displacements and sectional stresses are considered to be the primary variables through the application of Reissner's partially mixed principle. The warping displacements are modeled using generic FE shape functions with nonlinear distribution over the beam section. A generalized Timoshenko level stiffness matrix is derived which incorporates the effects of elastic couplings, transverse shear, and Poisson's deformations. The accuracy of the present analysis is validated for the stiffness constants and elastostatic responses of composite box beams which correlate well with the experimental data and other state-of-the-art approaches.

Bond strength of reinforcement in splices in beams

  • Turk, Kazim;Yildirim, M. Sukru
    • Structural Engineering and Mechanics
    • /
    • v.16 no.4
    • /
    • pp.469-478
    • /
    • 2003
  • The primary aim of this study was to investigate the bond strength between reinforcement and concrete. Large sized nine beams, which were produced from concrete with approximately ${f_c}^{\prime}=30$ MPa, were tested. Each beam was designed to include two bars in tension, spliced at the center of the span. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. In all experiments, the variable used was the reinforcing bar diameter. In the experiments, beam specimens were loaded in positive bending with the splice in a constant moment region. In consequence, as the bar diameter increased, bond strength and ductility reduced but, however, the stiffnesses of the beams (resistance to deflection) increased. Morever, a empirical equation was obtained to calculate the bond strength of reinforcement and this equation was compared with Orangun et al. (1977) and Esfahani and Rangan (1998). There was a good agreement between the values computed from the predictive equation and those computed from equations of Orangun et al. (1977) and Esfahani and Rangan (1998).

The Study on Degree of Coupling in Coupled Shear Wall System (병렬 전단벽의 커플링 정도에 관한 연구)

  • Park Wan-Shin;Yoon Hyun-Do;Hwang Sun-Kyung;Kim Sun-Woo;Han Min-Ki;Lee Won-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.135-138
    • /
    • 2005
  • Since a ductile coupled shear wall system is the primary seismic load resisting systems of many structures, a coupling beams of these system must exhibit excellent ductility and energy absorption capacity. In this paper, the seismic response of coupled shear wall system is discussed. It includes that the evaluation of the degree of coupling between the shear walls and the coupling beams. It is demonstrated through a review of experimental investigations of coupling beam behavior that often the coupling beam ductility demand exceeds the expected available ductility. As a result, it is possible that coupled shear wall system will not behave as desired in the course of a significant seismic event. Limits to the allowable degree of coupling are proposed as a remedy to this apparent deficiency.

  • PDF