• Title/Summary/Keyword: Primary beam

Search Result 385, Processing Time 0.028 seconds

Usage of Dynamic Vibration Absorbers for a Beam Subjected to Moving Forces and for a System Mounted on a Moving Base (이동하중을 받는 보와 가동 기초 위에 설치된 계에의 동흡진기의 이용)

  • Lee, Gun-Myung;Byun, Jai-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.27-34
    • /
    • 2015
  • Dynamic vibration absorbers are widely used in machinery, buildings, and structures, including bridges. Two cases of their usage are considered in this paper. One is a simply supported beam subjected to either a moving force or a sequence of moving forces, which simulates a train-bridge interaction problem. The other is a case where a primary system is mounted on a base that is not grounded and is excited by an external force. The conditions that the dynamic vibration absorbers must meet in these cases are found and compared to those for usual cases where bases of primary systems are grounded.

Efficient Analysis Models for Vertical Vibration of Space Framed Structures (3차원 골조구조물의 효율적인 연직진동해석)

  • 안상경;홍성일;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.78-85
    • /
    • 1996
  • The effect of vertical vibration of a beam is significantly influenced by higher modes of vibration. Therefore, a beam can be modeled using several elements must De used to represent a vibrating beam. As a result, analysis of a space framed structure for vertical vibration requires increase number of elements leading to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. An efficient analysis method for vertical vibration of space framed structures are proposed in this paper which is presented in three method. The first method is to determine minimum nodes that shall be used to obtain dynamic response with the vertical vibration. Secondly, matrix condensation methods are introduced to reduce the computation efforts used to perform dynamic analysis and the selection of primary degree-of-freedom is proposed. The third method is of using the mass participation factor for the selection of primary degree-of-freedom.

  • PDF

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Effects of various cone-beam computed tomography settings on the detection of recurrent caries under restorations in extracted primary teeth

  • Kamburoglu, Kivanc;Sonmez, Gul;Berktas, Zeynep Serap;Kurt, Hakan;Ozen, Dogukan
    • Imaging Science in Dentistry
    • /
    • v.47 no.2
    • /
    • pp.109-115
    • /
    • 2017
  • Purpose: The aim of this study was to assess the ex vivo diagnostic ability of 9 different cone-beam computed tomography (CBCT) settings in the detection of recurrent caries under amalgam restorations in primary teeth. Materials and Methods: Fifty-two primary teeth were used. Twenty-six teeth had dentine caries and 26 teeth did not have dentine caries. Black class II cavities were prepared and restored with amalgam. In the 26 carious teeth, recurrent caries were left under restorations. The other 26 intact teeth that did not have caries served as controls. Teeth were imaged using a $100{\times}90-mm$ field of view and a 0.2-mm voxel size with 9 different CBCT settings. Four observers assessed the images using a 5-point scale. Kappa values were calculated to assess observer agreement. CBCT settings were compared with the gold standard using a receiver operating characteristic analysis. The area under the curve (AUC) values for each setting were compared using the chi-square test, with a significance level of ${\alpha}=.05$. Results: Intraobserver kappa values ranged from 0.366 to 0.664 for observer 1, from 0.311 to 0.447 for observer 2, from 0.597 to 1.000 for observer 3, and from 0.869 to 1 for observer 4. Furthermore, interobserver kappa values among the observers ranged from 0.133 to 0.814 for the first reading and from 0.197 to 0.805 for the second reading. The highest AUC values were found for setting 5 (0.5916) and setting 3 (0.5886), and were not found to be statistically significant(P>.05). Conclusion: Variations in tube voltage and tube current did not affect the detection of recurrent caries under amalgam restorations in primary teeth.

Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars

  • Acar, Buket;Kamburoglu, Kivanc;Tatar, Ilkan;Arikan, Volkan;Celik, Hakan Hamdi;Yuksel, Selcen;Ozen, Tuncer
    • Imaging Science in Dentistry
    • /
    • v.45 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • Purpose: This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Materials and Methods: Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. Results: The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Conclusion: Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.

Numerical modeling of semi-confined composite beams consisting of GFRP and concrete

  • Hassanzadeh, Amir Masoud;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.79-84
    • /
    • 2017
  • Utilizing composite members in structures has been considered by many researchers in the past few decades. Using FRP can be very effective owing to its excessively high-tensile strength, which compensate concrete weak performance in tension. In this research, the studied composite beam includes a GFRP semi-confined trapezoidal section covered by GFRP and concrete layers. To assess the bearing capacity, a finite-element model of a composite beam subjected to displacement control loading has been developed and the results were validated using experimental results found throughout the literature. Several parameters affecting the bending performance and behavior of the semi-confined beam have been investigated in this study. Some of these parameters included the thickness of GFRP trapezoidal section members, concrete layer thickness, GFRP layer thickness and the confinement degree of the beam. The results revealed that the beam confinement had the highest effect on the bearing capacity due to prevention of separation of concrete from GFRP which causes the failure of the beam. From the results obtained, an optimal model of primary beam section has been introduced, which provides a higher bearing capacity with the same volume of materials used in the original beam section.

Ductile Behavior of High Strength Reinforced Concrete Beam-Column Joint (고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합부의 연성거동)

  • 이정한;유영찬;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.537-540
    • /
    • 1999
  • The primary objective of this study is to make a contribution to the construction of 40~60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700kg/$\textrm{cm}^2$, fy=4000, 8000kg/$\textrm{cm}^2$) R/C beam-column joints. And the purpose of this study is to investigate experimentally the effect of load history on the total energy dissipation capacity of reinforced concrete flexural members. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is horizontally anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF

The Parametric Influence on Focused Ion Beam Processing of Silicon (집속이온빔의 공정조건이 실리콘 가공에 미치는 영향)

  • Kim, Joon-Hyun;Song, Chun-Sam;Kim, Jong-Hyeong;Jang, Dong-Young;Kim, Joo-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.70-77
    • /
    • 2007
  • The application of focused ion beam(FIB) technology has been broadened in the fabrication of nanoscale regime. The extended application of FIB is dependent on complicated reciprocal relation of operating parameters. It is necessary for successful and efficient modifications on the surface of silicon substrate. The primary effect by Gaussian beam intensity is significantly shown from various aperture size, accelerating voltage, and beam current. Also, the secondary effect of other process factors - dwell time, pixel interval, scan mode, and pattern size has affected to etching results. For the process analysis, influence of the secondary factors on FIB micromilling process is examined with respect to sputtering depth during the milling process in silicon material. The results are analyzed by the ratio of signal to noise obtained using design of experiment in each parameter.

The Effects of Bent-up Bar on High Strength Reinforced Concrete Beam-Colum Joint Subjected to Cyclic Loads (반복하중을 받는 고강도 철근콘크리트 보-기둥 접합부의 구부림철근 효과에 관한 연구)

  • 신성우;이광수;오정근;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.61-65
    • /
    • 1990
  • The purpose of this study was to investigate the effect of Bent-up Bars in Beam-Column Joint with High-Strength Concrete up to 800 kg/$\textrm{cm}^2$. 5 specimens were tested under reversed cyclic loadings. The primary variables were the number of the Bented Bars with Joint Core, compressive strength and loading patterrns. The results showed that bent-up bars in beam-column joint prevented crack from extending into core but the failure was concreterated at the face of beam-column joint. Thus shear stress constant value(Г) should be revised for High Strength Concrete Beam-Column Joint with Bent-up Bars.

  • PDF