• 제목/요약/키워드: Primary aluminum

검색결과 136건 처리시간 0.024초

Slope plate 공법을 이용한 반응고 박판 및 제조 장치 개발 (Fabrication of Thin Plate of Semisolid Material using Slope Plate Process and Development of Fabrication Apparatus)

  • 구자윤;배정운;진철규;강충길
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.24-31
    • /
    • 2012
  • In this study, semi-solid thin plate of A 356 aluminum alloy was fabricated by using slope plate apparatus and vacuum pressurization. Slope plate was used to produce semi-solid material with spheroidal microstructures. After molten metal was poured into the slope plate connected to the pouring hole of die, semi-solid material flowed into the die cavity by vacuum degree. The primary crystals of the cast metal became spheroidal. In order to increase the working pressure, gas pressurization of U shape was designed for fabrication of thin plate. For 3 bar of gas pressure and 60 mmHg of vacuum degree, thin plate was fabricated without defects on surface.

AlN 분말의 고에너지 밀링에 따른 소결체의 절연 특성 (Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder)

  • 류성수;이성민
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.444-449
    • /
    • 2017
  • Aluminum nitride (AlN) powder specimens are treated by high-energy bead milling and then sintered at various temperatures. Depending on the solvent and milling time, the oxygen content in the AlN powder varies significantly. When isopropyl alcohol is used, the oxygen content increases with the milling time. In contrast, hexane is very effective at suppressing the oxygen content increase in the AlN powder, although severe particle sedimentation after the milling process is observed in the AlN slurry. With an increase in the milling time, the primary particle size remains nearly constant, but the particle agglomeration is reduced. After spark plasma sintering at $1400^{\circ}C$, the second crystalline phase changes to compounds containing more $Al_2O_3$ when the AlN raw material with an increased milling time is used. When the sintering temperature is decreased from $1750^{\circ}C$ to $1400^{\circ}C$, the DC resistivity increases by approximately two orders of magnitude, which implies that controlling the sintering temperature is a very effective way to improve the DC resistivity of AlN ceramics.

적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror)

  • 김건희;김효식;신현수;원종호;양순철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

Minimizing Zinc Consumption In Hot-Dip Galvanizing Lines

  • Bright, Mark;Ellis, Suzanne
    • Corrosion Science and Technology
    • /
    • 제10권2호
    • /
    • pp.43-46
    • /
    • 2011
  • Zinc consumption in a continuous galvanizing line is one of the highest operating cost items in the facility and minimizing zinc waste is a key economic objective for any operation. One of the primary sources of excessive loss of zinc is through the formation of top dross and skimmings in the coating pot. It has been reported that the top skimmings, manually removed from the bath, typically consist of more than 80% metallic zinc with the remainder being entrained dross particles ($Fe_2Al_5$) along with some oxides. Depending on the drossing practices and bath management, the composition of the removed top skimmings may contain up to 2 wt% aluminum and 1 wt% iron. On-going research efforts have been aimed at in-house recovery of the metallic zinc from the discarded top skimmings prior to selling to zinc recycling brokers. However, attempting to recover the zinc entrapped in the skimmings is difficult due to the complex nature of the intermetallic dross particles and the quality and volume of the recycled zinc is highly susceptible to fluctuations in processing parameters. As such, an efficient method to extract metallic zinc from top skimmings has been optimized through the use of a specialized thermo-mechanical process enabling a continuous galvanizing facility to conserve zinc usage on-site. Also, through this work, it has been identified that filtration of discrete dross particles has been proven effective at maintaining the cleanliness of the zinc. Future efforts may progress towards expanded utilization of filters in continuous galvanizing.

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

이물질 검출을 위한 X-Ray 비파괴검사 장비 개발 (Development of X-ray Non-destructive Testing (NDT) Equipment for the Detection of Alien Substances)

  • 유영태;오준호;김진우
    • 한국기계가공학회지
    • /
    • 제18권8호
    • /
    • pp.60-66
    • /
    • 2019
  • This study aims to develop and manufacture a device for inspecting impurities in a sealed aluminum container using an X-ray technique. Two X-ray oscillators and detectors are used to detect the entire sample. The stage for sample movement was fabricated using two high-voltage generators and X-ray detectors arranged diagonally. In addition, the high-voltage generator is composed of a vacuum tube, a high-voltage generator, and circulating oil for cooling. It includes a control unit for controlling other equipment, a power supply unit, and a video output unit; the most important part of the X-ray is the X-ray generation part. In this study, a flat panel was used along with the aim of developing the detector part. In particular, the development of the scintillator introduced in this study is a primary focus. The developed scintillator can be combined with a lens and can then be assembled with a charge coupled device (CCD) sensor.

Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어 (Microstructural Control of Al-Sn Alloy with Addition of Cu and Si)

  • 손광석;박태은;김진수;강성민;김태환;김동규
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.

타이타늄의 리사이클링 기술 현황 (Current Status of Titanium Recycling Technology)

  • 손호상
    • 자원리싸이클링
    • /
    • 제30권1호
    • /
    • pp.26-34
    • /
    • 2021
  • 타이타늄은 구조용 금속 중 알루미늄, 철, 마그네슘에 이어서 네 번째로 풍부한 금속이지만, 금속으로의 제련이 어려워 희소금속으로 분류되고 있다. 특히 타이타늄의 제련공정은 에너지 다소비형 공정이다. 타이타늄 스크랩으로 잉곳을 제조하면 에너지 소비량과 CO2 발생량을 약 95 %까지 절감할 수 있다. 그러나 스크랩 중의 철분과 산소 등의 불순물을 제거하기 어려워 리사이클링 되는 양은 한정되어 있다. 일반적으로 고품위 타이타늄 스크랩은 순타이타늄 스펀지의 재용해 공정에 투입하여 희석하고, 저품위 스크랩은 페로타이타늄 제조용 원료로 사용되고 있다. 본 논문에서는 이러한 타이타늄의 리사이클링 기술을 이해하기 위해 타아타늄의 제련기술과 리사이클링 기술에 대하여 고찰하였다.

대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발 (Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol))

  • 강지환;김미언;김용두;이영우;이상일
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.

IT 및 전자제품에 적용되는 알루미늄 합금소재의 표면처리디자인에 관한 연구 (Study on surface processing design of aluminum alloy materials that is applied to IT and electronics)

  • 한지수;김푸름;김현성
    • 한국결정성장학회지
    • /
    • 제27권4호
    • /
    • pp.212-219
    • /
    • 2017
  • 앞으로 다가올 감성이 지배하는 '하이터치(High-Touch)'의 시대에 걸맞은 사람이 되기 위해서는 6가지 능력이 중시되는데 디자인, 스토리, 조화, 공감, 놀이, 의미가 있으며 이 중에서 디자인과의 조화를 가장 중요한 능력으로 꼽았다. 모든 비즈니스의 기본요소라고 볼 수 있는 디자인은 논리적이고 객관화된 정보와 지식을 바탕으로 만들어진 현대의 디자인 관으로는 직관적이고 감성적인 앞으로의 시대 흐름에 발맞추기 힘들 것이다. 본 논문은 1차적 관점의 디자인 소재 중요성과 함께 심도 있는 Color, Material, Finishing(CMF) 이해와 차별화 전략을 세워 소비자가 느끼는 감성인지요소와 제품의 표면처리디자인 적용을 통한 대품질, 매력품질, 감동품질을 만족시키는 감성 표면처리디자인의 체계화 및 표준화를 제시하였다. 제품에 적용되어지는 부품 유형별 CMF 차별화 전략 방향 설정에 따라 구현가능성 차별성 신표면처리특성 효율성을 고려하여 시각적 표면처리 샘플로 구현하였다. 이를 통해 향후 실질적으로 제품 개발 시 IT 및 전자제품 분야와 그 이상의 분야에서 디자이너, CMF 디자이너, 표면처리전문가, 엔지니어 등 실무 환경에서의 대상제품, 부품유형, 적용소재, 적용표면처리, 표면컬러, 표면질감, 구현하고자하는 느낌 등 통합적 요소들을 이해하고 공유할 수 있는 실무자 소통연계 툴 및 감성 표면처리디자인 전략적 접근 프레임워크로서의 활용이 예상되는 바이다.