Browse > Article
http://dx.doi.org/10.7844/kirr.2021.30.1.26

Current Status of Titanium Recycling Technology  

Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Resources Recycling / v.30, no.1, 2021 , pp. 26-34 More about this Journal
Abstract
Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.
Keywords
titanium; scrap; ferro-titanium; impurity; smelting; remelting;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kusamichi, T. and Mitsui, N., 1999 : Progress in Titanium Melting Technology, Research and Development KOBE STEEL ENGINEERING REPORTS, 49(3), pp.13-14.
2 Ninagawa, S., Nagao, M., Kusamichi, T., et al., 1999 : Bottom Pouring Technology in Cold Crucible Induction Melting, Research and Development KOBE STEEL ENGINEERING REPORTS, 49(3), pp.15-16.
3 Takeda, O., Ouchi, T., and Okabe, T. H., 2020 : Recent Progress in Titanium Extraction and Recycling, Metall. Mater. Trans. B, 51B, pp.1315-1328.   DOI
4 Okabe, T. H., Zheng, C. and Taninouchi, Y., 2018 : Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals, Metall. Mater. Trans. B, 49B, pp.1056-1066.
5 Yoon, Moo-Won and Sohn, Ho-Sang, 2013 : Deoxidation of Titanium Scrap by Calciothermic Reduction, J. of Korean Inst. of Resources Recycling, 22(6), pp.41-47.   DOI
6 Oishi, T., Okabe, T. H. and Katsutoshi Ono, K., 1993 : Technology of deoxidation of titanium, Kekinzoku, 43(7), pp.392-400.
7 Iizuka, A., Ouchi, T. and Okabe, T. H., 2020 : Ultimate Deoxidation Method of Titanium-New Technology Using Rare Earth Oxyhalides, Titanium Japan, 68(3), pp.220-225.
8 Xu, L., Zhang, Y., Fang, Z., et al., 2018 : A novel deoxygenation process for Ti powder with Mg in H2, Ti USA 2018 Las Vegas.
9 Sohn, Hosang, 2020 : Recycling of Common Metals, p. 17, KNU Press, Daegu, Korea.
10 Sohn, Ho-Sang and Jung, Jae-Young, 2016 : Current Status of Titanium Smelting Technology, J. of Korean Inst. of Resources Recycling, 25(4), pp.68-79.   DOI
11 Hunter, M. A., 1910 : METALLIC TITANIUM, J. Am. Chem. Soc., 32(3), pp.330-336.   DOI
12 Kroll, W., 1940 : Method for manufacturing titanium and alloys thereof, US Patent No. 2,205,854.
13 Kroll, W., 1955 : How Commercial Titanium and Zirconium were Born, J. of The Franklin Institute, 260(3), pp.169-192.   DOI
14 Sohn, Ho-Sang, 2020 : Production Technology of Titanium by Kroll Process, J. of Korean Inst. of Resources Recycling, 29(4), pp.3-14.   DOI
15 Hyodo, T. and Mochizuki, N., 2007 : Titanium Sponge Production at OSAKA Titanium Technologies Co., Ltd., J. MMIJ, 123(13), pp.698-703.   DOI
16 Duflos, R., 2016 : Titanium Aerospace demand & Integrated Supply Chain, in: Proceedings of Titanium USA 2016, Sep. 25-28, 2016, Scottsdale, AZ, USA, ITA.
17 Nicholas, D. Corby III, 2020 : Titanium Scrap Trends, Procd. of TITANIUM Virtual 2020, 13-14 Oct. 2020.
18 https://www.usgs.gov/centers/nmic/titanium-statistics-and-information
19 Donachie, M.J., 2000 : Titanium: A Technical Guide, 2nd Ed., Ch. 2 Introduction to Selection of Titanium Alloys p. 8, ASM International.
20 Adam Coggins, 2019 : Titanium Metal-global supply and demand trends overview, Procd. of TITANIUM USA 2019, Mobile, AL, 25 Sept. 2019.
21 Sohn, Ho-Sang and Jung, Jae-Young, 2016 : Current Status of Ilmenite Beneficiation Technology for Production of TiO2, J. of Korean Inst. of Resources Recycling, 25(5), pp.64-74.   DOI
22 Kroll, W., 1940 : THE PRODU CTION OF DU CTILE TITANIUM, Trans. Electrochem. Soc., 78, pp.35-47.   DOI
23 Marui, Y., Kinoshita, T., and Takahashi, K., 2002 : Development of a titanium material by utilizing off-grade titanium sponge, Honda R&D Technical Review, 14, pp. 149-156.
24 Fukuyamam, T., Koizumi, M., Hanki, M., et al., 1993 : Production of Titanium Sponge and Ingot at Toho Titanium Co., Ltd., Shigen-to-Sozai, 109(12), pp.1157-1163.   DOI
25 Matt Schmink, 2019 : Ferrotitanium, Procd. of TITANIUM USA 2019, 22-25 Sept. 2019, Mobile, AL, ITA.
26 Noda, Toshio, 1991 : Review on Development of Titanium Sponge Production Technology, Bulletin of the Japan Institute of Metals, 30(2), pp.150-160.   DOI
27 Subramanyam, R. B., 1993 : Some recent innovations in the Kroll process of titanium sponge production, Bull. Mater. Sci., 16(6), pp.433-451.   DOI
28 Sohn, Hosang, 2019 : Engineering of Resources Recycling, p. 344, KNU Press, Daegu, Korea.
29 Duflos, R., 2016 : Titanium aerospace demand & integrated supply chain, Procd. of Titanium USA 2016, ITA, Sep. 25-28, 2016, Scottsdale, AZ, USA.
30 Faitelson, Jerry, 2015 : Recycling Titanium, Procd. of Titanium USA 2015, ITA, Oct. 4-7, 2015, Orlando, FL, USA.
31 Rotmann, B., Lochbichler, C., and Friedrich, B., 2011 : Challenges in Titanium Recycling - Do We Need a New Specification for Secondary Alloys?, Proc. of EMC 2011, Vol. 4, pp.1465-1480, June 26-28, Dusseldorf, Germany.