• 제목/요약/키워드: Primary Water Stress Corrosion

검색결과 98건 처리시간 0.028초

In-situ Raman Spectroscopic Study of Nickel-base Alloys in Nuclear Power Plants and Its Implications to SCC

  • Kim, Ji Hyun;Bahn, Chi Bum;Hwang, Il Soon
    • Corrosion Science and Technology
    • /
    • 제3권5호
    • /
    • pp.198-208
    • /
    • 2004
  • Although there has been no general agreement on the mechanism of primary water stress corrosion cracking (PWSCC) as one of major degradation modes of Ni-base alloys in pressurized water reactors (PWR's), common postulation derived from previous studies is that the damage to the alloy substrate can be related to mass transport characteristics and/or repair properties of overlaid oxide film. Recently, it was shown that the oxide film structure and PWSCC initiation time as well as crack growth rate were systematically varied as a function of dissolved hydrogen concentration in high temperature water, supporting the postulation. In order to understand how the oxide film composition can vary with water chemistry, this study was conducted to characterize oxide films on Alloy 600 by an in-situ Raman spectroscopy. Based on both experimental and thermodynamic prediction results, Ni/NiO thermodynamic equilibrium condition was defined as a function of electrochemical potential and temperature. The results agree well with Attanasio et al.'s data by contact electrical resistance measurements. The anomalously high PWSCC growth rate consistently observed in the vicinity of Ni/NiO equilibrium is then attributed to weak thermodynamic stability of NiO. Redox-induced phase transition between Ni metal and NiO may undermine the integrity of NiO and enhance presumably the percolation of oxidizing environment through the oxide film, especially along grain boundaries. The redox-induced grain boundary oxide degradation mechanism has been postulated and will be tested by using the in-situ Raman facility.

소성변형에 의한 배관 용접부의 잔류응력 개선 방법 (A Method of Residual Stress Improvement by Plastic Deformation in the Pipe Welding Zone)

  • 최상훈;왕지남
    • 설비공학논문집
    • /
    • 제25권10호
    • /
    • pp.568-572
    • /
    • 2013
  • The main components, such as a reactor vessel, in commercial nuclear power plants have been welded to pipes with dissimilar metal in which Primary Water Corrosion Cracking (PWSCC) has been occurred. PWSCC has become a worldwide issue recently. This paper addresses the results of experimental and numerical analysis to prevent PWSCC by changing the stress profile that is tensile stress to compressive stress at interesting regions with plastic deformation generated by mechanical pressure. Based on the results of experimental and numerical analysis with a 6 inch pipe and dissimilar metal welded pipes, compressive stress 68~206 Mpa is generated at all locations of inner surface in the heat affected zone.

핵연료상단고정체 누름스프링 체결나사의 파손해석 (Failure Analysis of Top Nozzle Holddown Spring Screw for Nuclear Fuel Assembly)

  • 고승기;류창훈;이정준;나의균;백태현;전경락
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1234-1239
    • /
    • 2003
  • A failure analysis of holddown spring screw was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure, a stress analysis of the top nozzle spring assembly was done using finite element analysis and a life prediction of the screw was made using a fracture mechanics approach. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.42 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

Burst Behavior for Mechanically Machined Axial Flaws of Steam Generator Tubings

  • Hwang, Seong Sik;Kim, Hong Pyo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제3권1호
    • /
    • pp.30-33
    • /
    • 2004
  • It has been reported that some events of a rupture of seam generator tube have occurred in nuclear power plants around the world. Main causes of the leakage are from various types of corrosion in the steam generator(SG) tubings. Primary water stress corrosion cracking(PWSCC) of steam generator tubings have occurred in many tubes in Korean plant, and they were repaired using sleeves or plugs, In order to develop proper repair criteria, it is necessary to ascertain the leak behavior of the tubings. A high pressure leak and burst testing system was manufactured. Various types of Electro Discharged Machined (EDM) notches were developed on the SG tubes. Leak rate and burst pressure were measured on the tubes at room temperature. Burst pressure of the part through wall defected tubes depends on the defect depth, Water flow rates after the burst were independent of the t1aw types; tubes having 20 to 60 mm long EDM notches showed similar flow rates regardless of the defect depth. A fast pressurization rate gave the tube a lower burst pressure than the case of a slow pressurization.

유한요소 해석변수가 원자로 배관 노즐 이종금속용접부의 용접잔류응력에 미치는 영향 (Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles)

  • 소나현;오경진;허남수;이성호;박흥배;이승건;김종성;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.8-18
    • /
    • 2012
  • In early constructed nuclear power plants, Ni-based Alloys 82/182 had been widely used for dissimilar metal welds (DMW) as a weld filler metal. However, Alloys 82/182 have been proven to be susceptible to primary water stress corrosion cracking (PWSCC) in the nuclear primary water environment. The formation of crack due to PWSCC is also influenced by weld residual stresses. Thus, the accurate estimation of weld residual stresses of DMW is crucial to investigate the possibility of PWSCC and instability behaviors of crack due to PWSCC. In this context, the present paper investigates weld residual stresses of nuclear reactor piping nozzles based on 2-D axi-symmetric finite element analyses based on layer-based approach using maximum molten bead temperature. In particular, the effect of analysis parameters, i.e., a thickness of weld layer, an initial molten bead temperature, convection heat transfer coefficient, and geometric constraints on predicted weld residual stresses was investigated.

가압기 전열기 슬리브 및 J-Groove 용접부의 자동 초음파검사 (Automatic Ultrasonic Inspection on Heater Sleeves and J-Groove Welds of Pressurizer)

  • 류승우;장희준;김선제;이상덕;성종환
    • 한국압력기기공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.20-27
    • /
    • 2010
  • In order to prevent the corrosion of component contacted primary water designed alloy 600 material in the nuclear power plant. But the primary water stress corrosion cracking(PWSCC) of alloy 600 and weld area occurs continuously due to the residual stress. The leakage accident resulted from PWSCC in the drain nozzle of the steam generator of domestic power plants. Heater sleeves of the pressurizer are welded with alloy 600 weld material and therefore exposed to the primary water environment. PWSCC occurred in heater sleeve material and weld area of many foreign power plants. The current issue of domestic nuclear power plants are consequently concentrated to PWSCC of similar material. In order to improve the detection and the sizing of the PWSCC in the welding sleeve of the pressurizer, the automatic UT system and multi-directions probe sets have been developed. The experimental studies have been performed using the mock-up block containing artificial reflectors(ID connected EDM notch) and semi-artificial cracks made from thermal fatigue. The automatic UT System is applied in the detection and the length sizing of the ID/OD on the tube and the J-groove weld area of the artificial reflectors and results of the detection and the sizing are compared respectively. Also, the developed automatic UT system is successfully accomplished to inspect the heater sleeve and the J-groove weld area on the pressurizer for the detection of PWSCC.

  • PDF

A New Test Method to Determine the Initiation Time of Stress Corrosion Cracking

  • Bahn, Chi-Bum;Lee, Tae-Hyun;Lee, Seung-Gi;Choi, Hoi-Su;Kim, Ji-Hyun;Hwang, Il-Soon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2005년도 춘계학술발표회
    • /
    • pp.347-348
    • /
    • 2005
  • A proving ring test method equipped with DCPD was developed and applied to detect the crack initiation time in PWR primary water conditions. The specimens were exposed to the PWR primary water environment during one month. The DCPD signals were very clear but the crack initiation was not detected manly because of the low stress condition. To increase the stress condition, Ni plating will be conducted after the straining the specimens.

  • PDF

Alloy 600의 결정립계 산화에 대한 표면 변형의 영향 (Effects of Surface Deformation on Intergranular Oxidation of Alloy 600)

  • 하동욱;임연수;김동진
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.138-145
    • /
    • 2020
  • Immersion tests of Alloy 600 were conducted in simulated primary water environments of a pressurized water reactor at 325 ℃ for 10, 100, and 1000 h to obtain insight into effects of surface deformation on internal and intergranular (IG) oxidation behavior through precise characterization using various microscopic equipment. Oxidized samples after immersion tests were covered with polyhedral and filamentous oxides. It was found that oxides were abundant in mechanically ground (MG) samples the most. The number density of surface oxides increased with time irrespective of the method of surface finish. IG oxidation occurred in mechanically polished (MP) and chemically polished (CP) samples with thin internal oxidation layers. However, IG oxidation was suppressed with relatively thick internal oxidation layers in MG samples compared to MP and CP samples, suggesting that MG treatment could increase resistance to primary water stress corrosion cracking (PWSCC) from the standpoint of IG oxidation. As a result, appropriate surface treatment for Alloy 600 could prevent oxygen diffusion into grain boundaries, inhibit IG oxidation, and finally induce its high PWSCC resistance.

ROLE OF GRAIN BOUNDARY CARBIDES IN CRACKING BEHAVIOR OF Ni BASE ALLOYS

  • Hwang, Seong Sik;Lim, Yun Soo;Kim, Sung Woo;Kim, Dong Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.73-80
    • /
    • 2013
  • The primary water stress corrosion cracking (PWSCC) of Alloy 600 in a PWR has been reported in the control rod drive mechanism (CRDM), pressurizer instrumentation, and the pressurizer heater sleeves. Recently, two cases of boric acid precipitation that indicated leaking of the primary cooling water were reported on the bottom head surface of steam generators (SG) in Korea. The PWSCC resistance of Ni base alloys which have intergranular carbides is higher than those which have intragranular carbides. Conversely, in oxidized acidic solutions like sodium sulfate or sodium tetrathionate solutions, the Ni base alloys with a lot of carbides at the grain boundaries and shows less stress corrosion cracking (SCC) resistance. The role of grain boundary carbides in SCC behavior of Ni base alloys was evaluated and effect of intergranular carbides on the SCC susceptibility were reviewed from the literature.