Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.3.138

Effects of Surface Deformation on Intergranular Oxidation of Alloy 600  

Ha, Dong Woog (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
Lim, Yun Soo (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
Kim, Dong Jin (Materials Safety Technology Development Division, Korea Atomic Energy Research Institute)
Publication Information
Corrosion Science and Technology / v.19, no.3, 2020 , pp. 138-145 More about this Journal
Abstract
Immersion tests of Alloy 600 were conducted in simulated primary water environments of a pressurized water reactor at 325 ℃ for 10, 100, and 1000 h to obtain insight into effects of surface deformation on internal and intergranular (IG) oxidation behavior through precise characterization using various microscopic equipment. Oxidized samples after immersion tests were covered with polyhedral and filamentous oxides. It was found that oxides were abundant in mechanically ground (MG) samples the most. The number density of surface oxides increased with time irrespective of the method of surface finish. IG oxidation occurred in mechanically polished (MP) and chemically polished (CP) samples with thin internal oxidation layers. However, IG oxidation was suppressed with relatively thick internal oxidation layers in MG samples compared to MP and CP samples, suggesting that MG treatment could increase resistance to primary water stress corrosion cracking (PWSCC) from the standpoint of IG oxidation. As a result, appropriate surface treatment for Alloy 600 could prevent oxygen diffusion into grain boundaries, inhibit IG oxidation, and finally induce its high PWSCC resistance.
Keywords
Alloy 600; PWSCC; Surface deformation; Immersion test; Intergranular oxidation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. Bamford and J. Hall, Proc. 11th Int'l Conf., p. 1071, Stevenson, WA (2003).
2 W. Bamford and J. Hall, Proc. 12th Int'l Conf., p. 959, Salt Lake City, Utah (2005).
3 W. Bamford, G. G. Elder, R. Perdue, and B. Newton, Proc. 13th Int'l Conf., Whistler, British Columbia (2007).
4 P. M. Scott and M. Le Calvar, Proc. 6th Int'l Conf., p. 657, San Diego, Calif (1993).
5 H. Dugdale, D. E. J. Armstrong, E. Tarleton, S. G. Roberts, and S. Lozano-Perez, Acta Mater., 61, 4707 (2013). https://doi.org/10.1016/j.actamat.2013.05.012   DOI
6 L. Volpe, M. G. Burke, and F. Scenini, Acta Mater., 186, 454 (2020). https://doi.org/10.1016/j.actamat.2020.01.020   DOI
7 Z. Shen, K. Chen, D. Tweddle, G. He, K. Arioka, and S. Lozano-Perez, Corros. Sci., 152, 82 (2019). https://doi.org/10.1016/j.corsci.2019.03.014   DOI
8 G. Bertali, F. Scenini, and M. G. Burke, Corros. Sci., 100, 474 (2015). https://doi.org/10.1016/j.corsci.2015.08.010   DOI
9 S. M. Payne and P. Mcintyre, Corrosion, 44, 314 (1988). https://doi.org/10.5006/1.3583943   DOI
10 Y. S. Lim, H. P. Kim, and S. S. Hwang, Corros. Sci. Tech., 11, 141 (2012).   DOI
11 Y. S. Lim, D. J. Kim, S. S. Hwang, H. P. Kim, and S. W. Kim, Mater. Char., 96, 28 (2014). https://doi.org/10.1016/j.matchar.2014.07.008   DOI
12 Y. S. Lim, H. P. Kim, H. D. Cho, and H. H. Lee, Mater. Char., 60, 1496 (2009) https://doi.org/10.1016/j.matchar.2009.08.005   DOI
13 D. B. Williams and C.B. Carter, Transmission Electron Microscopy IV Spectroscopy, 1st ed., Plenum Press, New York (1996).
14 ASTM E112-13, Standard Test Methods for Determining Average Grain Sizes, West Conshohocken, PA, ASTM International (2013).
15 C. R. Barrett, W. D. Nix, and A. S. Tetelman, The Principles of Engineering Materials, p. 168, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1973).
16 Y. S. Lim, D. J. Kim, S. W. Kim, and H. P. Kim, Nucl. Eng. Technol., 51, 228 (2019). https://doi.org/10.1016/j.net.2018.09.011   DOI
17 T. M. Angeliu and G. S. Was, Metall. Trans. A, 21A, 2097 (1990).
18 J. Robertson, Corros. Sci., 32, 443 (1991). https://doi.org/10.1016/0010-938X(91)90125-9   DOI
19 P. Combrade, P.M. Scott, M. Foucault, E. Andrieu and P. Marcus, Proc. 12th Int'l Conf., on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 883, Salt Lake City, Utah (2005).
20 M. J. Olszta, D.K. Schreiber, M. B. Toloczko, and S. M. Bruemmer, Proc. 16th Int'l Conf., on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, p. 1805, Asheville, North Carolina (2013).
21 J. Panter, B. Viguier, J. M. Cloue, M. Foucault, P. Combrade, and E. Andrieu, J. Nucl. Mater., 348, 213 (2006). https://doi.org/10.1016/j.jnucmat.2005.10.002   DOI
22 S. Lozano-Perez, D. W. Saxey, T. Yamada, and T. Terachi, Scr. Mater., 62, 855 (2010). https://doi.org/10.1016/j.scriptamat.2010.02.021   DOI
23 Y. Han, J. Mei, Q. Peng, E. H. Han, and W. Ke, Corros. Sci., 98, 72 (2015). https://doi.org/10.1016/j.corsci.2015.05.026   DOI
24 Y. S. Lim, D. J. Kim, S. W. Kim, S. S. Hwang, and H. P. Kim, Mater. Char., 157, 109922 (2019). https://doi.org/10.1016/j.matchar.2019.109922   DOI
25 S. M. Bruemmer, L. A. Charlot, and C. H. Henager, Corrosion, 44, 782 (1988). https://doi.org/10.5006/1.3584948   DOI
26 Y. Han, E. H. Han, Q. Peng, and W. Ke, Corros. Sci., 121, 1 (2017). https://doi.org/10.1016/j.corsci.2017.03.004   DOI
27 F. Scenini, R. C. Newman, R. A. Cottis, and R. J. Jacko, Corrosion, 64, 824 (2008). https://doi.org/10.5006/1.3279916   DOI
28 Z. Shen, K. Chen, D. Tweddle, G. He, K. Arioka, and S. Lozano-Perez, Corros. Sci. 152, 82 (2019). https://doi.org/10.1016/j.corsci.2019.03.014   DOI