• Title/Summary/Keyword: Primary Resonance

Search Result 456, Processing Time 0.026 seconds

Electrochemical Reduction of Triphenylphosphine Phenylimide (Triphenylphosphine Phenylimide의 전기화학적인 환원)

  • Pak Chong Min;Wilson M. Gulick, Jr.
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.341-353
    • /
    • 1974
  • The electrochemical reduction of triphenylphosphine penylimide in nonaqueous media has been examined by polarography, cyclic voltammetry, controlled-potential coulometry and electron spin resonance spectroscopy. The reduction of triphenylphosphine phenylimide proceeds by a one-electron transfer to form anion radical which undergoes both protonation and a second one-electron reduction followed by cleavage of the phosphorus-nitrogen double bond. Aniline is a major product. The cleavage of a phosphorus-phenyl bond was also observed after reduction of triphenylphosphine oxide which is one of the major products of the chemical reaction which follow the primary process.

  • PDF

A Rare Case of Diffuse Pachymeningeal Involvement of Multiple Myeloma

  • Yoon, Jehong;Kim, Eui Jong;Lee, Kyung Mi;Choi, Woo Suk;Park, Bong Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.252-255
    • /
    • 2015
  • Intracranial involvement in multiple myeloma patients takes up around 1%, and is usually known to be present in the parietal bone or skull base in cases of skull vault involvement, while it presents in the dura and parenchyma in cases of intracranial involvement. Primary pachymeningeal invasion is even rarer with extremely rapid progression and very poor prognosis. It is our intent to report a case in which we had to differentiate multiple myeloma with other metastatic tumors, lymphoma, and leukemia with intracranial involvement. Our patient showed an osteolytic lesion of the skull with dural involvement and subdural mass formations.

Model Updating of High-Speed Spindle (초고속 스핀들의 모델 개선법)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In the design of modem rotating machinery, it is often necessary to increase the performance of rotor-bearing system. Since a critical speed range influences the performance and safety of the whole system, it should be necessary to constrain the critical speed and thus resonance response in design process to result in large vibration. Consequently the minimization of resonance response amplitudes within the operation range of the rotor system becomes the most primary design objective. In this paper, based on the assumption that the external shape of rotating-shaft, bearing supporting positions and etc, the natural frequency analysis of spindle is performed by ANSYS $10.0^{(R)}$ Optimum design is conducted using the RBF model.

Parametric and Combination Resonances of at Straight Pipe with Pulsatile Flow (조화유동을 갖는 직선 파이프의 매개변수공진 해석)

  • Hong, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1588-1595
    • /
    • 2006
  • The stabilities of a pinned-pinned straight pipe conveying fluid are investigated by complexification-averaging method. The flow is assumed to vary harmonically about a constant mean velocity. Instability conditions of a governing equation are analytically obtained about parametric primary, secondary and combination resonances. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to one and two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to the difference of two natural frequencies, instabilities does not exist.

Effects of Low Intensity Blood Flow Restriction Training on Brain Motor Area Activation

  • Rhee, Min-Hyung;Kim, Jong-Soon
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.235-241
    • /
    • 2022
  • Purpose: The purpose of this study was to identify the effects of low intensity blood flow restriction training (LBFR) on the central nervous system of healthy adults. Methods: Ten healthy right-handed adults (eight males and two females, mean age of 28.6 ± 2.87 years) were selected as study subjects. Functional magnetic resonance imaging (fMRI) was conducted to measure brain activation (BA) following LBFR and non-LBFR. The primary motor area, premotor area, and supplementary motor area, which are closely related to exercise, were set as the regions of interest. Results: The BA recorded during the LBFR condition was 931.7 ± 302.44 voxel, and the BA recorded during the non-LBFR condition was 1,510.9 ± 353.47 voxel. Conclusion: BA was lower during LBFR than during non-LBFR.

Large-Signal Modulation Characteristics of a Diode Laser (다이오드 레이저의 대신호 변조특성)

  • Lee, Chang-Hee;Yoon, Tae-Hoon;Shin, Sang-Yung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.1
    • /
    • pp.91-100
    • /
    • 1986
  • The nonlinear rate equations are solved analytically by using the singular perturbation method to study effects of the spontaneous emission factor and the photon lifetime on the primary resonance and the first subharmonic generation(i.e., the onset of the periocd-doubling route to chaos). By large signal modulation of Hitachi CSP laser HLP 1400, the resonance frequency shift than 100 ps with 1 GHz repetition rate are generated. The experimental observations are in reasonable agreement with the theoretical results obtained using measured parameters of the rate equations.

  • PDF

Comparison of Segmentation based on Threshold and KCMeans Method

  • R.Spurgen Ratheash;M.Mohmed Sathik
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.93-96
    • /
    • 2024
  • The segmentation, detection, and extraction of infected tumour area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated many algorithm methods are available in medical imaging amongst them the Threshold technique brain tumour segmentation process gives an accurate result than other methods for MR images. The proposed method compare with the K-means clustering methods, it gives a cluster of images. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, process time and similarity of the segmented part. The experimental results achieved more accuracy, less running time and high resolution.

The effect of osteotome technique on primary implant stability according to implant fixture diameter (임플란트 일차 안정성에 있어서 고정체 지름에 따른 osteotome 술식의 효과)

  • Kim, Su-Hyun;Lee, Jae-Kwan;Park, Chan-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.789-798
    • /
    • 2005
  • Primary stability is a fundamental criteria of implant success. There has been various trials to increase initial stability and bone to implant contact. The objective of osteotome technique is to preserve all the existing bone by minimizing or even eliminating the drilling sequence of the surgical protocol. The bone layer adjacent to the osteotomy site is progressively compacted with various bone condensers(osteotomes) this will result in a denser bone to implant contact. This improved bone density helps to optimize primary implant stability in low density bone. The use of wide implant is one of methods to increse primary stability. They can be used in special situations in which they can increase the surface area available for implant anchorage and improve their primary stability The aim of this study was to evaluate the influence of the osteotome technique and implant width on primary stability. Osteotome technique was compared with conventional drilling method by resonance frequency measurments according to the implant fixtures diameter. The results were as follows: 1. The average of ISQ value was sightly higher in osteotome technique, but there was not statistically significant in regular and narrow implant(p <0.05). 2. Either osteotome technique or conventional technique. ISQ value was significantly higer as increasing of implant diameter(p <0.05). 3. ISQ value of drilling technique was higer than those of osteotome technique in wide implant. It was assumed to be caused by difference in final preparation diameter.

A STUDY ON THE MEASUREMENT OF THE IMPLANT STABILITY USING RESONANCE FREQUENCY ANALYSIS (공진 주파수 분석법에 의한 임플랜트의 안정성 측정에 관한 연구)

  • Park Cheol;Lim Ju-Hwan;Cho In-Ho;Lim Heon-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.182-206
    • /
    • 2003
  • Statement of problem : Successful osseointegration of endosseous threaded implants is dependent on many factors. These may include the surface characteristics and gross geometry of implants, the quality and quantity of bone where implants are placed, and the magnitude and direction of stress in functional occlusion. Therefore clinical quantitative measurement of primary stability at placement and functional state of implant may play a role in prediction of possible clinical symptoms and the renovation of implant geometry, types and surface characteristic according to each patients conditions. Ultimately, it may increase success rate of implants. Purpose : Many available non-invasive techniques used for the clinical measurement of implant stability and osseointegration include percussion, radiography, the $Periotest^{(R)}$, Dental Fine $Tester^{(R)}$ and so on. There is, however, relatively little research undertaken to standardize quantitative measurement of stability of implant and osseointegration due to the various clinical applications performed by each individual operator. Therefore, in order to develop non-invasive experimental method to measure stability of implant quantitatively, the resonance frequency analyzer to measure the natural frequency of specific substance was developed in the procedure of this study. Material & method : To test the stability of the resonance frequency analyzer developed in this study, following methods and materials were used : 1) In-vitro study: the implant was placed in both epoxy resin of which physical properties are similar to the bone stiffness of human and fresh cow rib bone specimen. Then the resonance frequency values of them were measured and analyzed. In an attempt to test the reliability of the data gathered with the resonance frequency analyzer, comparative analysis with the data from the Periotest was conducted. 2) In-vivo study: the implants were inserted into the tibiae of 10 New Zealand rabbits and the resonance frequency value of them with connected abutments at healing time are measured immediately after insertion and gauged every 4 weeks for 16 weeks. Results : Results from these studies were such as follows : The same length implants placed in Hot Melt showed the repetitive resonance frequency values. As the length of abutment increased, the resonance frequency value changed significantly (p<0.01). As the thickness of transducer increased in order of 0.5, 1.0 and 2.0 mm, the resonance frequency value significantly increased (p<0.05). The implants placed in PL-2 and epoxy resin with different exposure degree resulted in the increase of resonance frequency value as the exposure degree of implants and the length of abutment decreased. In comparative experiment based on physical properties, as the thickness of transducer increased, the resonance frequency value increased significantly(p<0.01). As the stiffness of substances where implants were placed increased, and the effective length of implants decreased, the resonance frequencies value increased significantly (p<0.05). In the experiment with cow rib bone specimen, the increase of the length of abutment resulted in significant difference between the results from resonance frequency analyzer and the $Periotest^{(R)}$. There was no difference with significant meaning in the comparison based on the direction of measurement between the resonance frequency value and the $Periotest^{(R)}$ value (p<0.05). In-vivo experiment resulted in repetitive patternes of resonance frequency. As the time elapsed, the resonance frequency value increased significantly with the exception of 4th and 8th week (p<0.05). Conclusion : The development of resonance frequency analyzer is an attempt to standardize the quantitative measurement of stability of implant and osseointegration and compensate for the reliability of data from other non-invasive measuring devices It is considered that further research is needed to improve the efficiency of clinical application of resonance frequency analyzer. In addition, further investigation is warranted on the standardized quantitative analysis of the stability of implant.

Primary Spinal Cord Melanoma

  • Kim, Min-Soo;Yoon, Do-Heum;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.2
    • /
    • pp.157-161
    • /
    • 2010
  • Primary central nervous system (CNS) melanoma is a rare condition that accounts for only 1% of all melanomas. A 34-year-old Korean female presented with a two-month history of progressive weakness in both legs. Spinal magnetic resonance image (MRI) revealed a spinal cord tumor at the level of T4, which was hyperintense on T1-weighted imaging and hypointense on T2-weighted imaging. The intradural and extramedullary tumor was completely resected and diagnosed as melanoma. There were no metastatic lesions. At three years after surgery, the patient is still alive, with no evidence of tumor recurrence. We present the details of this case along with a comprehensive review of spinal cord melanoma.