• 제목/요약/키워드: Preventive Replacement

검색결과 113건 처리시간 0.025초

사용환경의 변화에 대한 최적예방교환정책 (Optimal Preventive Replacement Policies for a Change of Operational Environment)

  • 공명복
    • 대한산업공학회지
    • /
    • 제21권4호
    • /
    • pp.507-517
    • /
    • 1995
  • The failure rate of an item depends on operational environment. When an item has a chance failure period and a wearout failure period in sequel, the severity of operational environment causes the increase in the slop of wearout failure rate or the increase in the magnitude of chance failure rate. For such a change of operational environment, this paper concerns the change of optimal preventive replacement time. Two preventive replacement policies, age replacement policy and periodic replacement policy with minimal repair, are considered. Investigated properties are: (a) in age replacement policy, optimal preventive replacement time increases as the chance failure rate increases and optimal preventive replacement time decreases as the slope of wearout failure rate increases, and (b) in periodic replacement policy with minimal repair, optimal preventive replacement time increases as the slope of wearout failure rate increases; however, the change of chance failure rate does not alter the optimal preventive replacement time.

  • PDF

주기적인 검사 정책하에서 최적예방 교체시기 결정에 관한 연구 (A Study of Optimal Maintenance Schedules of a System under the Periodic Inspection Policy)

  • 정현태;김제승
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.263-271
    • /
    • 1997
  • This paper presents a preventive maintenance model for determining the preventive replacement period of a system in which a failure rate is affected by the cumulative damage of fault and inspection. Especially, the failure rate function is considered to be a function of the cumulative damage of the fault and inspection time. Types of replacement considered are preventive replacement and failure replacement. Failure rate and expected cost function between replacement are derived. An optimal policy is obtained that minimizes the average cost per unit time for preventive replacement, failure replacement, inspection and repair.

  • PDF

경미한 고장을 수반하는 시스템에 대한 노화 및 예방적 교체 정책 (Preventive Policy With Minor Failure Under Age and Periodic Replacement)

  • 이진표
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.78-89
    • /
    • 2022
  • The purpose of this study was to propose useful suggestion by analyzing preventive replacement policy under which there are minor and major failure. Here, major failure is defined as the failure of system which causes the system to stop working, however, the minor failure is defined as the situation in which the system is working but there exists inconvenience for the user to experience the degradation of performance. For this purpose, we formulated an expected cost rate as a function of periodic replacement time and the number of system update cycles. Then, using the probability and differentiation theory, we analyzed the cost rate function to find the optimal points for periodic replacement time and the number of system update cycles. Also, we present a numerical example to show how to apply our model to the real and practical situation in which even under the minor failure, the user of system is not willing to replace or repair the system immediately, instead he/she is willing to defer the repair or replacement until the periodic or preventive replacement time. Optimal preventive replacement timing using two variables, which are periodic replacement time and the number of system update cycles, is provided and the effects of those variables on the cost are analyzed.

교체-수리보증이 종료된 이후의 예방보전정책 (Preventive maintenance policy following the expiration of replacement-repair warranty)

  • 정기문
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권2호
    • /
    • pp.57-66
    • /
    • 2012
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of replacement-repair warranty. Under this preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

검사에 의해서만 고장이 인지될 수 있는 장비의 예방교체정책 (Preventive Replacement Policy for the System that the Failure can be Detected only by Inspection)

  • 안병오;하석태
    • 한국국방경영분석학회지
    • /
    • 제18권1호
    • /
    • pp.110-127
    • /
    • 1992
  • In the preventive replacement policies of system that the failure can be detected through only periodic inspection, there is a penalty cost associated with the lapsed time between system failure and its detection. The system under study is replaced if the system fails before $n^{th}$ inspection, otherwise, preventive replacement is performed at the $n^{th}$ inspection. The decision variables are the inspection interval and the period of preventive replacement. This study presents the optimal preventive replacement policy that minimizes the long-run expected cost per unit time.

  • PDF

동적 계획법에 의한 예방교체모형에 관한 연구 (A Study on a Preventive Replacement Model by the Dynamic Programming Method)

  • 조재립;황의철
    • 산업경영시스템학회지
    • /
    • 제10권16호
    • /
    • pp.75-80
    • /
    • 1987
  • This paper is deals with the preventive replacement for the equipment which fails only when the total amount of damage reaches a prespecified failure level. Most of replacement model use time as their decision variable, but it is not appropriate for the cases in which failures dependent on their cumulative damage levels. In this paper, a new type preventive replacement model is introduced in which an equipment is replaced before failure when the cumulative damage reaches a certain level or replaced on failure, whichever occures first. The optimal replacement damage levels which minimize total expected cost are obtained by the Dynamic programming Method when the number of use of the equipment is finite. A numerical example is also presented. The optimal preventive replacement policy when the equipment will be used for a finite time span is also discussed.

  • PDF

교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책 (Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty)

  • 정기문
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

The ($\textsc{k}, t_p$) Replacement Policy for the System subject to Two Types of Failure

  • Lee, Seong-Yoon
    • 한국국방경영분석학회지
    • /
    • 제25권2호
    • /
    • pp.144-157
    • /
    • 1999
  • In this paper, we consider a new preventive replacement policy for the system which deteriorates while it is in operation with an increasing failure rate. The system is subject to two types of failure. A type 1 failure is repairable while a type 2 failure is not repairable. In the new policy, a system is replaced at the age of $t_p$ or at the instant the$\textsc{k}^{th}$ type 1 failure occurs, whichever comes first. However, if a type 2 failure occurs before a preventive replacement is performed, a failure replacement should be made. We assume that a type 1 failure can be rectified with a minimal repair. We also assume that a replacement takes a non-negligible amount of time while a minimal repair takes a negligible amount of time. Under a cost structure which includes a preventive replacement cost, a failure replacement cost and a minimal repair cost, we develop a model to find the optimal ($\textsc{k},t_p$) policy which minimizes the expected cost per unit time in the long run while satisfying a system availability constraint.

  • PDF

수리비용이 증가할 때의 수리 사용 후 교환정책 (Preventive Replacement Policy under Increasing Minimal Repair Costs at Failure)

  • 박성범;김영민
    • 대한안전경영과학회지
    • /
    • 제8권2호
    • /
    • pp.139-153
    • /
    • 2006
  • This paper deals with two forms of preventive replacement policy with minimal repair at failure. Those are, 1. the replacement policy I based on the cumulative operating time. 2. the replacement policy II based on the number of failures. The basic assumptions are; (1) the cost of minimal repair at failure is increasing with the number of failures since the last replacement, (2) the equipment fails stochastically with time.

잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법 (Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models)

  • 주영석;신승준
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.