• 제목/요약/키워드: Pretension

검색결과 108건 처리시간 0.021초

프리텐션공법의 프리스트레스트 콘크리트 부재의 정착길이 산정에 관한 실험 및 이론연구 (Derivation of Development Length in Pretensioned Prestressed Concrete Members)

  • 오병환;김의성;최영철
    • 콘크리트학회논문집
    • /
    • 제12권6호
    • /
    • pp.3-11
    • /
    • 2000
  • In pretensioned concrete structures, bond between prestressing steel and concrete is an essential component to ensure the integrity of a pretensioned member. The anchorage and development of the prestressing force depend exclusively on bond. The purpose of this study is to investigate the characteristics of bond and development length between pretensioned steel and concrete. To resolve the controversy over the adequacy of the current code provision on development length of prestressing strands, a comprehensive test program has been scheduled and twenty four rectangular prestressed concrete beams have been tested to determine development length. Major test variables include diameter of strands (12.7mm, 15.2mm) and concrete covers (3cm, 4cm, 5cm). The test results indicate that the development length based on the bond stress-slip relation. The proposed model can evaluate realistically the development length of pretensioned prestressed concrete members and can be the good basis for the future basis of code equations on development length of PSC members.

두꺼운 벽을 갖는 복합재료 튜브의 잔류응력 저감 연구 (Reduction of Residual Stresses in Thick-Walled Composite Tubes)

  • 신의섭;정성남
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.176-179
    • /
    • 2003
  • This paper deals with the optimum design of thick-walled multi-layered composite tubes by minimizing the process-induced residual stresses under some constraints of structural stiffnesses. An analytic model based on quasi-static thermoelasticity is adopted for the calculation of the residual stresses in the multi-layered composite tubes. The numerical results of optimization show that, in the case of cross-ply CFRP tubes, the residual stresses can be reduced to a certain level by controlling ply thicknesses. However, the optimized tubes may be susceptible to cracking because the transverse residual stress is still large in a strength-based sense. To further suppress the residual stresses, the effects of stacking sequence, wall thickness and axial pretension on the optimum solutions are examined.

  • PDF

볼나사 지지 구조와 베어링 조합 배열에 관한 연구 (A Study on Structure of Support Ball Screw and Arrangement of Combined Bearing)

  • 홍성오;정성택;조규재
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.51-56
    • /
    • 2002
  • In order to achieve high precision machine tools, Performance enhancement of feed drive systems is required. One of the important technical issues is how to decrease thermal expansion of ball screw in proportion to the increase of machining speed. When measuring force of stretch of ball screw, since not only actual expansion and the value of bending have to be considered, it is impossible to define the exact value of expansion. In addition, support bearings of ball screw gain considerable force in axial direction. It also generates thermal expansion on the ball screw, and deteriorates the performances of the hearings. In conclusion, it is impossible to give the pretension enough to absorb all the elongation due to thermal expansion generated during machine is running. If given bed column and saddle are all bent to chance machine accuracy, and the support bearings of ball screw is damaged.

터보 디젤 엔진용 배기매니폴드의 열변형 해석 (Thermal Deformation Analysis of Exhaust Manifold for Turbo Diesel Engine in Consideration of Flange Design)

  • 김범근;이은현;최복록
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.338-343
    • /
    • 2007
  • Thermal deformation of cast iron exhaust manifold for turbo diesel engine is investigated by finite element analysis (FEA). The FE model included the temperature dependent material properties as well as the interactions between exhaust manifold, cylinder head and fasteners. It also considers the sliding behavior of the flanges of exhaust manifold on cylinder head when either expansion or contraction of the exhaust manifold exceeds the fastener pretension. The result of analysis revealed that remarkable thermal deformation along the longitudinal direction. Compressive plastic deformation at high temperature remained tensile stress in manifold and resulted in longitudinal contraction at ambient temperature. The amount of contraction at each fastener position was predicted and compared with experimental results. Analysis results revealed that the model predicted deformation qualitatively, but more elaborated cyclic hardening behavior would be necessary to predict the deformation quantitatively.

Nonlinear analysis of cable-supported structures with a spatial catenary cable element

  • Vu, Tan-Van;Lee, Hak-Eun;Bui, Quoc-Tinh
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.583-605
    • /
    • 2012
  • This paper presents a spatial catenary cable element for the nonlinear analysis of cable-supported structures. An incremental-iterative solution based on the Newton-Raphson method is adopted for solving the equilibrium equation. As a result, the element stiffness matrix and nodal forces are determined, wherein the effect of self-weight and pretension are taken into account. In the case of the initial cable tension is given, an algorithm for form-finding of cable-supported structures is proposed to determine precisely the unstressed length of the cables. Several classical numerical examples are solved and compared with the other available numerical methods or experiment tests showing the accuracy and efficiency of the present elements.

풀스팬 프리캐스트 세그먼트 교량의 해석 및 장기거동 해석 (Long Term Behavior and Analysis of Full Span Precast Segmental Bridge)

  • 오병환;채성태;정상화;박지언
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.434-441
    • /
    • 1999
  • The newly proposed Precast Segmental Mettled (PSM), which makes use of precast elements for election, is relatively new, efficient and fast mettled for the construction of prestressed box girder bridges. A precast segment of 25m long pretensioned in the fabrication yard is transported by a special trailer and a launching truss to its final position. The segments are then connected in the site by post-tensioning to make a continuous prestressed concrete box girder bridges. The purpose of this parer is to analyze and evaluate the design of precast prestressed concrete box girder bridges. The detailed analyses including time-dependent behavior of PSM bridges are conducted. The major results and findings, which have been obtained from finite element analysis of PSM bridge, are discussed in this paper and these results will be a good base for the design and analysis of a new precast bridges.

  • PDF

A new mindlin FG plate model incorporating microstructure and surface energy effects

  • Mahmoud, F.F.;Shaat, M.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.105-130
    • /
    • 2015
  • In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.

Effect of pre-stressed cable on pre-stressed mega-braced steel frame

  • Tang, Baijian;Zhang, Fuxing;Wang, Yi;Wang, Fei
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.327-341
    • /
    • 2016
  • This study addresses the effect of pre-stressed cables on a pre-stressed mega-braced steel frame through employing static analysis and pushover analysis. The performances of a pre-stressed mega-braced steel frame and a pure steel frame without mega-braces are compared in terms of base shear, ductility, and failure mode. The influence of the cable parameters is also analyzed. Numerical results show that cable braces can effectively improve the lateral stiffness of a pure frame. However, it reduces structural ductility and degenerates structural pre-failure lateral stiffness greatly. Furthermore, it is found that 20% fluctuation in the cable pretension has little effect on structural ultimate bearing capacity and lateral stiffness. As comparison, 20% fluctuation in the cable diameter has much greater impact.

Cable sag-span ratio effect on the behavior of saddle membrane roofs under wind load

  • Hesham Zieneldin;Mohammed Heweity;Mohammed Abdelnabi;Ehab Hendy
    • Wind and Structures
    • /
    • 제36권3호
    • /
    • pp.149-160
    • /
    • 2023
  • Lightness and flexibility of membrane roofs make them very sensitive to any external load. One of the most important parameters that controls their behavior, especially under wind load is the sag/span ratio of edge cables. Based on the value of the pretension force in the edge cables and the horizontal projection of the actual area covered by the membrane, an optimized design range of cable sag/span ratios has been determined through carrying on several membrane form-finding analyses. Fully coupled fluid structure dynamic analyses of these membrane roofs are performed under wind load with several conditions using the CFD method. Through investigating the numerical results of these analyses, the behavior of membrane roofs with cables sag/span ratios selected from the previously determined optimized design range has been evaluated.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • 제12권2호
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.