Browse > Article
http://dx.doi.org/10.12989/sem.2015.53.1.105

A new mindlin FG plate model incorporating microstructure and surface energy effects  

Mahmoud, F.F. (Mechanical Engineering Department, Zagazig University)
Shaat, M. (Mechanical Engineering Department, Zagazig University)
Publication Information
Structural Engineering and Mechanics / v.53, no.1, 2015 , pp. 105-130 More about this Journal
Abstract
In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.
Keywords
couple stress theory; nanomechanics; nano plates; functionally graded materials; surface elasticity; size-dependent model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Shaat, M., Mahmoud, F.F., Alshorbagy, A.E., Alieldin, S.S. and Meletis, E.I. (2012), "Size-dependent analysis of functionally graded ultra-thin films", Struct. Eng. Mech., 44(4), 431-448.   DOI   ScienceOn
2 Shaat, M., Eltaher, M.A., Gad, A.I. and Mahmoud, F.F. (2013a), "Nonlinear size-dependent finite element analysis of functionally graded elastic tiny-bodies", Int. J. Mech. Sci., 77, 356-64.   DOI
3 Shaat, M., Mahmoud, F.F., Alieldin, S.S. and Alshorbagy, A.E. (2013c), "Finite element analysis of functionally graded nano-scale films", Finite Elem. Anal. Des., 74, 41-52.   DOI
4 Shaat, M. and Mohamed, S.A. (2014), "Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories", Int. J. Mech. Sci., 84, 208-217.   DOI
5 Shaat, M., Mahmoud, F.F., Gao, X.L. and Faheem, A.F. (2014), "Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects", Int. J. Mech. Sci., 79, 31-37.   DOI
6 Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153.   DOI   ScienceOn
7 Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Rational Mech. Anal., 11, 385-414.   DOI
8 Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solid. Struct., 46(13), 2757-64.   DOI
9 Wang, Z.Q. and Zhao, Y.P. (2009), "Self-instability and bending behaviors of nano plates", Acta Mechanica Solida Sinica, 22(6), 630-643.   DOI   ScienceOn
10 Bafekrpour, E., Simon, G.P., Habsuda, J., Naebe, M., Yang, C. and Fox, B. (2012), "Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites", Mater. Sci. Eng. A, 545, 123-131.   DOI
11 Aboudi, J. (1991), Mechanics of Composite Materials - A Unified Micromechanical Approach, Elsevier, Amsterdam.
12 Alibeigloo, A. (2010), "Exact solution for thermo-elastic response of functionally graded rectangular plates", Compos. Struct., 92, 113-121.   DOI
13 Alieldin, S.S., Alshorbagy, A.E. and Shaat, M. (2011), "A first-order shear deformation finite element model for elastostatic analysis of laminated composite plates and the equivalent functionally graded plates", Ain Sham. Eng. J., 2, 53-6.   DOI
14 Alshorbagy, A.E., Alieldin, S.S., Shaat, M. and Mahmoud, F.F. (2013), "Finite element analysis of the deformation of functionally graded plates under thermomechanical loads", Math. Prob. Eng., 2013, 13.
15 Arbind, A. and Reddy, J.N. (2013), "Nonlinear analysis of functionally graded microstructure-dependent beams", Compos. Struct., 98, 272-281.   DOI
16 Yin, L., Qian, Q., Wang, L. and Xia, W. (2010), "Vibration analysis of microscale plates based on modified couple stress theory", Acta Mechanica Solida Sinica, 23(5), 386-93.   DOI
17 Wang, Z.Q. and Zhao, Y.P. (2011), "Thermo-hyperelastic models for nanostructured materials", Sci. China:Phys. Mech. Astron., 54, 948-956.   DOI
18 Yaghoobi, H. and Fereidoon, A. (2010), "Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load", World Appl. Sci. J., 10(3), 337-341.   DOI
19 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solid. Struct., 39(10), 2731-43.   DOI
20 Bharti, I., Gupta, N. and Gupta, K.M. (2013), "Novel applications of functionally graded nano, optoelectronic and thermoelectric materials", Int. J. Mater. Mech. Manuf., 1(3), 221-224.
21 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195-216.   DOI
22 Chen, Y., Lee, J.D. and Eskandarian, A. (2004), "Atomistic viewpoint of the applicability of micro continuum theories", Int. J. Solid. Struct., 41, 2085-2097.   DOI   ScienceOn
23 Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: analysis", Int. J. Solid. Struct., 43, 3657-3674.   DOI
24 Chong, A.C.M., Yang, F., Lam, D.C.C. and Tong, P. (2001), "Torsion and bending of micron-scaled structures", J. Mater. Res., 16(4), 1052-8.   DOI
25 Cosserat, E. and Cosserat, F. (1909), Theory of deformable bodies, A. Hermann etFils, Paris.
26 Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50, 609-614.   DOI
27 Edelen, D.G.B. (1969), "Protoelastic bodies with large deformation", Arch. Rat. Mech. Anal., 34, 283-300.
28 Eringen, A.C. and Suhubi, E.S. (1964), "Nonlinear theory of simple micro-elastic solids-I", Int. J. Eng. Sci., 2, 189-203.   DOI   ScienceOn
29 Eringen, A.C. (1966), "A unified theory of thermomechanical materials", Int. J. Eng. Sci., 4, 179-202.   DOI
30 Guo, J.G. and Zhao, Y.P. (2005), "The size-dependent elastic properties of nanofilms with surface effects", J. Appl. Phys., 98, 11.
31 Guo, J.G. and Zhao, Y.P. (2007), "The size-dependent bending elastic properties of nanobeams with surface effects", Nanotechnol., 18, 6.
32 Eringen, A.C. (1999), Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag, New York.
33 Fu, Y. and Zhang, J. (2010), "Modeling and analysis of microtubules based on a modified couple stress theory", Phy. E: Low-Dimen. Syst. Nanostruct., 42(5), 1741-5.   DOI
34 Gao, X.L. and Mahmoud, F.F. (2014), "A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects", Z. Angew. Math. Phys., 65 (2), 393-404.   DOI
35 Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surface", Arch. Ration. Mech. Anal., 57, 291-323.
36 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440.   DOI
37 Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48, 2496-2510.   DOI
38 Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solid., 13, 213-222.   DOI
39 Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro plates based on a modified couple stress theory", Phys. E: Low-Dimen. Syst. Nanostruct., 43(4), 877-83.   DOI
40 Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the sizedependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-94.   DOI
41 Lu, P., He, L.H. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647.   DOI
42 Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded doublewalled carbon nanotubes based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(5), 1031-9.   DOI
43 Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimens. Syst. Nanostruct., 43(7), 1387-93.   DOI
44 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlinmicroplates based on the modified couple stress theory", J. Sound. Vib., 331(1), 94-106.   DOI
45 Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Nederl. Akad. Wetensch. Proc. Ser. B, 67, 17-44.
46 Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-37.   DOI
47 Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-508.   DOI
48 Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46, 1176-1185.   DOI
49 Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-91.   DOI
50 Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta. Mech., 220(1-4), 217-35.   DOI
51 Mahmoud, F.F., Eltaher, M.A., Alshorbagy, A.E. and Meletis, E.I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563.   DOI   ScienceOn
52 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple stresses in linear elasticity", Arch. Rational Mech. Anal., 11, 415-448.   DOI
53 Mindlin, R.D. (1964), "Microstructure in linear elasticity", Arch. Rational Mech. Anal., 16, 51-78.
54 Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall., 21, 571-574.   DOI
55 Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16, 2355.   DOI
56 Rokni, H., Seethaler, R.J., Milani, A.S., Hashemi, S.H. and Li, X.F. (2013), "Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation", Sens. Actuat. A, 190, 32- 43.   DOI
57 Shaat, M., Mahmoud, F.F., Alshorbagy, A. E. and Alieldin, S. S. (2013b), "Bending Analysis of Ultra-thin Functionally Graded Mindlin Plates Incorporating Surface Energy Effects", International Journal of Mechanical Sciences, 75, 223-232.   DOI
58 Ru, C.Q. (2010), "Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions", J. Phys. Mech. Astron., 53, 536-544.   DOI
59 Wang, Z.Q., Zhao, Y.P. and Huang, Z.P. (2010), "The effects of surface tension on the elastic properties of nano structures", Int. J. Eng. Sci., 48, 140-150.   DOI