• Title/Summary/Keyword: Pressure resistance

Search Result 2,182, Processing Time 0.03 seconds

Analysis of Vibration Characteristics for a Molded Dry-type Potential Transformer (몰드형 건식 계기용 변압기 진동 특성 분석)

  • Kim, Moosun;Jang, Dong Uk;Kim, Seung Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • Most of the present potential transformers of train vehicles are of the oil-type filled with insulating oil and are susceptible to problems such as explosion due to the increase in the internal pressure during train operation and poor reliability near the end of their life cycle. As a solution to this problem, it is necessary to develop a molded dry-type potential transformer with excellent pressure-resistance performance using insulating resin. In order to localize the product, the Korea Railroad Research Institute has been developing a molded dry-type potential transformer. As part of this research, it is necessary to analyze the vibration characteristics of the developed product and to check the transformer performance in a vibration environment. In this study, a resonance test and simulated long-term life test of the developed product were conducted according to the KS R 9144 and IEC 61373 standards, respectively, which are vibration test methods for railway vehicle parts. Their natural frequencies were analyzed by comparing the results of the numerical modal analysis and resonance test, in order to confirm their adherence to the standards. Also, the performance test after the simulated long-term life test confirmed that the operation of the developed transformer was not problematic even in a long-time vibration environment.

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

Fundamental Study on the Reinforcing Effect of Reinforced Clayey Soil with Nonwoven-geotextile (부직포 보강 점성토의 보강효과에 관한 기초적 연구)

  • 김유성;이재열
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.61-76
    • /
    • 1998
  • Various kinds of reinforced soil methods have been developed by many researchers or companies for their economic merits mainly. These methods have generally used sandy soils which have high permeability as embanking or backfill material. That is because, if poor embanking materials, especially like a clayey soil which has very low permeability, are used in a reinforced soil embanking, and if excessive pore water pressure is produced by external factors, the friction resistance between reinforcing members and Boils decrease, as a result possible damage or collapse of the body of a reinforced embankment. In fact, clayey Boils can also be used as a embanking materials with reinforcement which has high permeable capacity, and are expected to be able to dissipate the excess pore water pressure effectively. In this study reinforcing effects have been examined through a serries of direct shear tests in which clayey soils are reinforced with nonwoven geotextiles of which permeability is very high and tensile strength is relatively weaker than geogrids which are usually used in reinforced soil wall. Even though such nonwoven geotextile are used as reinforcement of high saturated clayey soils. the test results show the possibility that nonwoven geoteztiles could be used as a reinforcement for reinforced soil walls effectively.

  • PDF

Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane (정삼투 공정에 있어 비대칭 셀룰로오즈 막의 투과유속 감소특성)

  • Lee, Keun-Woo;Han, Myeong-Jin;Nam, Suk-Tae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.328-334
    • /
    • 2014
  • This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was $1.8081{\times}10^{-7}m/s{\cdot}atm$ for draw solution on active layer (DS-AL) mode and $1.0957{\times}10^{-7}m/s{\cdot}atm$ for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was $5.5306{\times}10^6$ and $9.1266{\times}10^6s{\cdot}atm/m$, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33~1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (${\pi}$) would be expressed as $J=-0.0177+0.4506{\pi}-0.0032{\pi}^2$ for the forward and $J=0.0948+0.3292{\pi}-0.0037{\pi}^2$ for the latter.

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

Case of Treatment Using Adaptive Servo-Ventilation in a Patient with Central Sleep Apnea after a Lateral Medullary Infarction (외측 연수 경색에 의해 발생한 중추성 수면 무호흡 환자의 자동-적응형 양압기를 사용하여 치료한 경험)

  • Kim, Dae Jin;Cho, Jae Wook;Kim, Hyun Woo;Choi, Jeong Su;Mun, Sue Jean
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.3
    • /
    • pp.278-283
    • /
    • 2020
  • Central sleep apnea (CSA) is characterized by respiratory failure of at least 10 seconds without any effort of the chest and abdomen in the absence of upper airway resistance during sleep. In this case, the patient experiences respiratory failure that does not meet the CSA diagnostic criteria and CSA symptoms. Magnetic resonance imaging diffusion-weighted imaging (MRI DWI) scans revealed a lateral medullary infarction. Continuous positive airway pressure (CPAP) was applied as a primary treatment for CSA and respiratory failure. During the titration of CPAP, the apnea-hypopnea index (AHI) and arousal index (AI) were worse than the results before its use (AHI: 42.5/hr→82.8/hr, AI: 21.7/hr→40.8h). As a result, adaptive servo-ventilation (ASV) was chosen as the secondary treatment. Compared to the night-polysomnography results before the ASV treatment, the AHI improved (42.5/hr→8.6/hr). Therefore, ASV is a potential treatment for CSA and respiratory failure in these patients.

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.

The Local Myocardial Perfusion Rates of Right Atrial Cardioplegia in Hearts with Coronary Arterial Obstruction (관상동맥 협착을 동반한 심장에서 심근보호액 우심방 관류법의 심근 국소관류량)

  • Lee, Jae-Won;Seo, Gyeong-Pil
    • Journal of Chest Surgery
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • The quantitatively measured local myocardial perfusion rates with microspheres are used as an objective indicator of even distribution of cardioplegic solution, and the efficacy of the retrograde right atrial route of cardioplegia is evaluated in hearts with various levels of coronary arterial obstruction. After initial antegrade cardioplegia under the median sternotomy and aortic cannulation, 60 hearts from anesthetized New Zealand white rabbits are divided in random order as normal group [ligated left main coronary artery ; MA, MR] and diagonal group [ligated proximal diagonal artery ; LA, LR]. Half of each group [N=10] are perfused with antegrade cardioplegia[A] under the pressure of 100 cmH2O and the other half with retrograde right atrial route[R] under the pressure of 60 cmH2O[St. Thomas cardioplegic solution mixed with measured amount of microspheres]. The myocardium is subdivided into segments as A[atria], RV[right ventricle]. S[septum], LV[normally perfused left ventricular free wall], ROI[ischemic myocardium of left ventricular free wall]. LV and RQI are further divided into N[subendocardium] and P[subepicardium]. The resulting local myocardial perfusion rates and N /P of each group are compared with Wilcoxon rank sum test. The weight of the hearts is 5.94$\pm$0.66g, and there are no statistically significant dif-ferences[p>0.05, ANOVA] between six compared group. The mean flow rate[F: ml /g / min] of MR group is comparable with MA group[p>0.05], but in N and L group, there are significantly depressed F with right atrial route of cardioplegia, which means elevated perfusion resistance with this route. In spite of no significant differences in delivered doses of microsphere[DEL] between compared groups[p>0.05, ANOVA], there are significantly depressed REC and NF in hearts with right atrial cardioplegia which suggests increased requirement of cardioplegic solution with this route. The interventricular septum shows poor perfusion with right atrial route of cardioplegia without obstruction of supplying coronary arteries. But, with obstruction of coronary artery supplying septum as in M group, the flow rate is superior with right atrial route of infusion. The left ventricular free wall perfusion rates of every RQI with R route are superior to that of A route[p<0.05]. But, in LV segments, there are unfavorable effects of right atrial cardioplegia in L group, although the subendocardial perfusion is well maintained in N group. The LV free wall of left main group shows depressed perfusion rates with antegrade route as compared with RQI segments of diagonal group. But, by contraries, there are increased perfusion rates and superior N /P ratio with retrograde right atrial route. It implies more effective perfusion with right atrial route of cardioplegia in more proximal coronary arterial obstruction[i.e., M group as compared with L group]. As a conclusion, all region of ischemia have superior perfusion rates with right atrial car-dioplegia as compared with antegrade route, and especially excellent results can be obtained in hearts with more proximal obstruction of coronary arteries which would otherwise result in more severe ischemic damage. But, the depressed perfusion rates of the segments with normal coronary artery in hearts with coronary arterial obstruction may be a problem of concern with right atrial cardioplegia and needs solution.

  • PDF

Characteristics and Fabrication of Micro-Gas Sensors with Heater and Sensing Electrode on the Same Plane (동일면상에 heater와 감지전극을 형성한 마이크로가스센서의 제작 및 특성)

  • Lim, Jun-Woo;Lee, Sang-Mun;Kang, Bong-Hwi;Chung, Wan-Young;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1999
  • A micro-gas sensor with heater and sensing electrode on the same plane was fabricated on phosphosilicate glass(PSG, 800nm)/$Si_3N_4$ (150nm) dielectric membrane. PSG film was provided by atmospheric pressure chemical vapor deposition(APCVD), and $Si_3N_4$ film by low pressure chemical vapor deposition (LPCVD). Total area of the fabricated device was $3.78{\times}3.78mm^2$. The area of diaphragm was $1.5{\times}1.5mm^2$, and that of the sensing layer was $0.24{\times}0.24mm^2$. Finite-element simulation was employed to estimate temperature distribution for a square-shaped diaphragm. The power consumption of Pt heater was about 85mW at $350^{\circ}C$. Tin thin films were deposited on the silicon substrate by thermal evaporation at room temperature and $232^{\circ}C$, and tin oxide films($SnO_2$) were prepared by thermal oxidation of the metallic tin films at $650^{\circ}C$ for 3 hours in oxygen ambient. The film analyses were carried out by SEM and XRD techniques. Effects of humidity and ambient temperature on the resistance of the sensing layer were found to be negligible. The fabricated micro-gas sensor exhibited high sensitivity to butane gas.

  • PDF

Dynamic Structural Response Characteristics of Stiffened Blast Wall under Explosion Loads (폭발 하중을 받는 보강된 방폭벽의 동적 구조 응답 특성에 관한 연구)

  • Kim, Sang Jin;Sohn, Jung Min;Lee, Jong Chan;Li, Chun Bao;Seong, Dong Jin;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.380-387
    • /
    • 2014
  • Piper Alpha disaster drew attention to the damage likely to arise from explosions and fires on an offshore platform. And great concerns have been increased to prevent these hazards. Blast wall is one of the passive safety systems; it plays a key part of minimizing the consequences. However, a buckling due to explosion loads is a factor which can reduce the strength of blast wall. The buckling often occurs between web and flange at the center of blast wall. This study aims to find a solution for reinforcing its strength by installing a flat plate at the spot where the buckling occurs. First of all, ANSYS finite element method is adopted to numerically compute the structural resistance characteristic of blast wall by using a quasi-static approach. Sequentially, the impact response characteristics of blast wall are investigated the effect on thickness of flat plate by using ANSYS/LS-DYNA. Finally, pressure-impulse diagrams (P-I diagram) are presented to permit easy assessment of structural response characteristics of stiffened blast wall. In this study, effective use is made to increase structural intensity. of blast wall and acquired important insights have been documented.