• Title/Summary/Keyword: Pressure monitoring

Search Result 1,087, Processing Time 0.031 seconds

Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity

  • Jung, Young;Cho, Hanchul
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2022
  • The importance of flexible polymer-based pressure sensors is growing in fields like healthcare monitoring, tactile recognition, gesture recognition, human-machine interface, and robot skin. In particular, health monitoring and tactile devices require high sensor sensitivity. Researchers have worked on sensor material and structure to achieve high sensitivity. A simple and effective method has been to employ three-dimensional pressure sensors. Three-dimensional (3D) structures dramatically increase sensor sensitivity by achieving larger local deformations for the same pressure. In this paper, the performance, manufacturing method, material, and structure of high-sensitivity flexible pressure sensors based on 3D structures, are reviewed.

Remote Patient Monitoring through the Internet (인터넷을 통한 원격환자 모니터링)

  • 박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2001
  • In this paper, we present an intensive patient monitoring service through the Internet, which enables medical doctors to watch their patients in a remote site, to monitor their vital signs and to give them some advices for first-aid treatment. The service consists of three service objects: Monitoring Information Service(MIS), Vital Sign Monitoring Service(VSMS) and Multimedia Consulting (MCS). Through the MIS, medical doctors can get information about the patients currently under monitoring, including their names, ages, genders, symptoms, current main complaints and current locations. The VSMS enables medical doctors to monitor in real-time patients' vital signs such as electrocardiogram (ECG), respiration, temperature, blood oxygen saturation (SpO$_{2}$), invasive blood pressure (IBP), and non-invasive blood pressure (NIBP). It also generates alarms when the patients are likely to be in a critical situation. The MCS provides a real-time multimedia desktop conferencing facility for watching patients and instructing attendants to administer some first-aid treatment. We carried out some experiments according to two different scenarios. The intensive patient monitoring service was functioning well in a 100Base-T Ethernet LAN environment.

  • PDF

Telemetry capsule for pressure monitoring in the gastrointestinal tract (소화관 내 압력 측정을 위한 텔레메트리 캡슐 구현)

  • Yoon, Ki-Won;Woo, Sang-Hyo;Lee, Jyung-Hyun;Moon, Yeon-Kwan;Park, Hee-Joon;Won, Chul-Ho;Kim, Byung-Kyu;Choi, Hyun-Chul;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.211-218
    • /
    • 2005
  • As the cause and the treatment about gastrointestinal disease has been issued recently, the importance of measuring the pressure in the gastrointestinal tract has been increased. However, the conventional measurement methods of the pressure in the gastrointestinal tract cause the patients' pain and inconvenience as well as an inaccurate pressure measurement. In this paper, the pressure monitoring telemetry system has been designed and implemented for an accurate pressure measurement inside the gastrointestinal tract with minimizing pain and inconvenience. The pressure monitoring telemetry system is composed of a pressure measurement capsule and an external receiver. The capsule has been miniaturized into the same size of a vitamin tablet so that the capsule can be swallowed through the oral cavity. After the capsule acquires and encodes the pressure data in the gastrointestinal tract, the encoded pressure data are modulated by frequency shift keying (FSK) and transmitted with ultrahigh frequency (UHF) band signal to the outside of a body. The performance of the telemetry capsule for monitoring pressure in the gastrointestinal tract is demonstrated by the results of animal in-vivo experiments.

A New Approach Method of Measuring Abdominal Pressure for Urodynamic Monitoring System (요역동학 측정시스템을 위한 새로운 복압측정 기법)

  • Seo, Jeong-Hwan;Kim, Keo-Sik;An, Yang-Su;Kim, Kyeong-Seop;Song, Chul-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1170-1176
    • /
    • 2007
  • The conventional urodynamic monitoring is fulfilled by artificially filling a bladder with saline. Generally. it is difficult to evaluate the physiological functions of the storage and voiding of a bladder. With this aim, we constructed an ambulatory urodynamic monitoring (AUM) system and proposed a novel method estimating abdominal pressure by measuring bio-impedance variations. Our system was clinically evaluated for 10 patients. It turned out to be that as the intensity of the abdomen contraction increased, the amplitude of bio-impedance signal and the RMS value of EMG increased more as compared to those who observed during the rest mode. Also, we determined the optimum electrode pair for estimating the abdominal pressure using bio-impedance method and consequently compared with the conventional methods. Because impedance changes differ from a weight, a height, contractile force, volume of muscle and blood other or whatever of individuals, it was quantified in terms of impedance change, correlation coefficient and SNR Our results showed the optimum electrode pair (1,9) which could detect impedance changes due to the increase of the intensity in the abdominal pressure. The correlation coefficient and quadratic function between the RMS values of EMG and the impedance changes were 0.87 and $y=0.0014x^2+0.0620x+0.6958$, respectively. Thus, our system demonstrated that the abdominal pressure could be measured noninvasively and conveniently by simply estimating bio-impedance values. We propose that this optimum electrode configuration would be useful for the future studies involving the handy measurements of abdominal pressure with our suggested ambulatory urodynamics monitoring system.

A Simulator for the Validation of Non-invasive Blood Pressure (NIBP) Monitoring Devices (자동혈압계 성능평가를 위한 인체혈압 시뮬레이터 개발)

  • Doh, Il;Lim, Hyun Kyoon;Ahn, Bongyoung;Chee, Youngjoon;Lee, Jongshill;OH, Jae Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.111-115
    • /
    • 2017
  • Blood pressure is one of the important vital signs for monitoring the medical condition of a patient. Automated NIBP(non-invasive blood pressure) monitoring devices calculate systolic and diastolic blood pressures from the oscillation in cuff pressure caused by a pulsation of an artery. To validate the NIBP devices, we developed a simulator to supply the oscillometric waveforms obtained from human subjects. The simulator provided pressure pulses to device-under-test and device readings were compared to the auscultatory references. Fully automated simulation system including OCR(optical character recognition) were developed and used for NIBP monitoring devices. The validation results using the simulator agreed well with previous clinical validation. More validation studies using the standardized oscillometric waveforms would be required for the replacement of clinical trials to validate a new automated NIBP monitoring device.

Evaluation of Ubiquitous High Blood-Pressure Demonstration in Sungnam (성남시 유비쿼터스 고혈압 관리에 대한 평가)

  • Lee, Won-Jae;Kim, Hye-Jung;Lee, Jae-Eun
    • Korean Journal of Health Education and Promotion
    • /
    • v.25 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • Objective: The current study was to test if the developed sphygmomanometer was working well and blood pressure information could be collected and monitored systematically through the internet. We tested if the sphygmomanometer and services for blood pressure controlled high blood pressure significantly and the ubiquitous monitoring could be used further. Methods: Kyungwon University, KT Co., Gil Medical Center, LIG Nex1 Co., and Sujeong Health Center conducted an ubiquitous high blood control project in Sujeong-gu, Sungnam, Korea from Mar. 5 to May 16. We developed and applied sphygmomanometer. We distributed the devices to 27 high blood pressure patients. The blood pressures of the residents were monitored through the internet when they measured blood pressures in their homes. A nurse monitored and consulted their blood pressures in the monitoring center in Kyungwon University during the demonstration period. The consultant called them and consulted on their blood pressures in few seconds they used the sphygmomanometers. For the significance of change in blood pressure, we tested statistically with Generalized Additive Model(GAM) and Multi-level Analysis. Results: Both GAM and Multi-level Analysis showed that the blood pressures of persons with ubiquitous blood pressure management decreased significantly as time passed. Conclusions: The internet monitoring and services are considered to be promising because most of the participants were satisfied especially because somebody was caring their health. The decrease of blood pressures was significant by GAM and Multi-level Analysis. Thus, we can apply ubiquitous blood pressure management to health promotion projects.

Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples (고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가)

  • Minseok Song;Soohyeon, Moon;Gitak Chae;Jun-Hwan Bang
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

A Safety Analysis of Tunnel Lining for Monitoring (계측에 의한 터널 라이닝의 안전성 분석)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.103-110
    • /
    • 2002
  • Maintenance monitoring of the tunnel which offers continuous data during and after tunneling has been applying to tunnels in order to meet the maintenance of tunnel and to confirm continuous security of the tunnel after tunneling. But, the maintenance monitoring of tunnel results for long period is not easy to find, and moreover, the rational analysis method on tunnel monitoring has not been established yet. In this study, the relationships between displacement and stress of the tunnel concrete lining using various analysis methods are compared with maintenance monitoring. The tunnel behavior were measured in the subway tunnel passing comparative soft the weathering and analyzed both security and mechanical characteristics of the tunnel concrete lining. Also, analyzed relationship between residual water pressure applied on tunnel design and one obtained by monitoring.

Real-time Sitting Posture Monitoring System using Pressure Sensor (압력센서를 이용한 실시간 앉은 자세 모니터링 시스템)

  • Jung, Hwa-Young;Ji, Jun-Keun;Min, Se Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.940-947
    • /
    • 2015
  • A Sitting posture is a very important issue for moderns who is mostly sedentary. Also, a wrong sitting posture causes back-pain and spinal disease. Many researchers have been proposed numerous approaches that classifying and monitoring for a sitting posture. In this paper, we proposed a real-time sitting posture monitoring system that was developed to measure pressure distribution in the human body. The proposed system consists of a pressure sensing module (six pressure sensors), data acquisition and processing module, a communication module and a display module for an individual sitting posture monitoring. The developed monitoring system can classify into five sitting postures, such as a correct sitting, sitting on forward inclination, leaning back sitting, sitting with a right leg crossed and a left leg crossed. In addition, when a user deviates from the correct posture, an alarm function is activated. We selected two kinds of chairs, one is rigid material and fixed form, the other one is a soft material and can adjust the height of a chair. In the experiments, we observed appearance changes for subjects in consequence of a comparison between before the correction of posture and after the correction of posture when using the proposed system. The data from twenty four subjects has been classified with a proposed classifier, achieving an average accuracy of 83.85%, 94.56% when the rigid chair and the soft chair, respectively.

Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site (황령산 사면 계측관리 분석에 관한 연구)

  • La Won Jin;Choi Jung Chan;Kim Kyung Soo;Cho Yong Chan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.429-442
    • /
    • 2004
  • Landslide of the Whanpyeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category of plane failure. Automatic monitoring system to measure horizontal displacement, pore pressure change and load change has operating from reconstruction stage for evaluating rock slope stability (August, 2000$\~$Feburuary, 2002). As a result of the analysis on the monitoring performance data, it is suggested that infiltrated rain water from pound surface discharges rapidly through cut-slope because pressure head of water decreases rapidly after rainfall while rise of pore pressure is proportional to the amount of rain water. As a result of data analyses for inclinometers and load cells, it seems that slope is stablized be cause ground deformation is rarely detected. The areas especially similar to the study site where landslide is induced by heavy rain fall, change of pore pressure is rapidly analyzed using automatic monitoring system. Therefore, it is considered that automatic monitoring system is very effect for slope stability analysis on important cut-slopes.