• Title/Summary/Keyword: Pressure loss

검색결과 2,180건 처리시간 0.028초

수계소화시스템 버터플라이 밸브의 성능해석에 관한 연구 (A Study on the Performance Analysis of Butterfly Valve in Water Fire Extinguishing System)

  • 이동명
    • 한국화재소방학회논문지
    • /
    • 제21권3호
    • /
    • pp.91-96
    • /
    • 2007
  • 수계소화시스템 버터플라이 밸브의 성능해석에 대한 연구를 수행하였다. 버터플라이 밸브의 성능해석으로는 토크특성, 압력손실과 캐비테이션을 고찰하였다. 밸브의 토크특성은 토크 이론식에 밸브 디스크의 개도각이 보정되었고, 보정식이 추가되었다. 밸브의 열림각에 대한 압력손실계수는 Carnot 방정식을 응용하여 수식화하였다. 버터플라이 밸브의 토크특성, 압력손실과 캐비테이션은 디스크의 두께와 직경 비에 대해 해석하였다. 캐비테이션은 밸브의 압력손실계수로부터 해석하였다. 압력손실과 캐비테이션 해석은 밸브의 열림각에 대한 두께 비의 변화에 따라 수행하였다. 이들 해석 데이터는 버터플라이 밸브를 개발하는데 필요한 엔지니어링 데이터로 활용하고자 한다.

관로 형상에 따른 생활폐기물 이송시스템의 유동특성 (Flow Characteristics of Piping System Having Various Shapes in Refuse Collecting System)

  • 장춘만
    • 한국유체기계학회 논문집
    • /
    • 제12권3호
    • /
    • pp.13-18
    • /
    • 2009
  • This paper describes flow characteristics in a piping system having various duct shapes on refuse collecting system. A simulator for the refuse collecting system is designed to analyze the flow characteristics in the piping system. The simulator consists of an air intake, a waste chute, circular duct having various shapes, cyclone and turbo blower. The simulator has four different duct shapes: straight, curved, inclined and Y-shaped ducts. Three-dimensional Navier-Stokes analysis is introduced to analyze the pressure loss in the piping system. Throughout the numerical simulation, pressure loss obtained by numerical simulation has a good agreement with the results of experimental measurements. The selected length of curved and Y-ducts for the pressure loss is determined using pressure distributions on the duct. Flow and pressure characteristics in the piping system of the simulator are evaluated by numerical simulation and discussed in detail.

CFD ANALYSIS OF HEAVY LIQUID METAL FLOW IN THE CORE OF THE HELIOS LOOP

  • Batta, A.;Cho, Jae-Hyun;Class, A.G.;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.656-661
    • /
    • 2010
  • Lead-alloys are very attractive nuclear coolants due to their thermo-hydraulic, chemical, and neutronic properties. By utilizing the HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER$^2$) facility, a thermal hydraulic benchmarking study has been conducted for the prediction of pressure loss in lead-alloy cooled advanced nuclear energy systems (LACANES). The loop has several complex components that cannot be readily characterized with available pressure loss correlations. Among these components is the core, composed of a vessel, a barrel, heaters separated by complex spacers, and the plenum. Due to the complex shape of the core, its pressure loss is comparable to that of the rest of the loop. Detailed CFD simulations employing different CFD codes are used to determine the pressure loss, and it is found that the spacers contribute to nearly 90 percent of the total pressure loss. In the system codes, spacers are usually accounted for; however, due to the lack of correlations for the exact spacer geometry, the accuracy of models relies strongly on assumptions used for modeling spacers. CFD can be used to determine an appropriate correlation. However, application of CFD also requires careful choice of turbulence models and numerical meshes, which are selected based on extensive experience with liquid metal flow simulations for the KALLA lab. In this paper consistent results of CFX and Star-CD are obtained and compared to measured data. Measured data of the pressure loss of the core are obtained with a differential pressure transducer located between the core inlet and outlet at a flow rate of 13.57kg/s.

소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구 (A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas)

  • 김민호;정우인;천인범
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석 (Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator)

  • 김범주;이정현;김도형;강승원;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

The loss coefficient for fluctuating flow through a dominant opening in a building

  • Xu, Haiwei;Yu, Shice;Lou, Wenjuan
    • Wind and Structures
    • /
    • 제24권1호
    • /
    • pp.79-93
    • /
    • 2017
  • Wind-induced fluctuating internal pressures in a building with a dominant opening can be described by a second-order non-linear differential equation. However, the accuracy and efficiency of the governing equation in predicting internal pressure fluctuations depend upon two ill-defined parameters: inertial coefficient $C_I$ and loss coefficient $C_L$, since $C_I$ determines the un-damped oscillation frequency of an air slug at the opening, while $C_L$ controls the decay ratio of the fluctuating internal pressure. This study particularly focused on the value of loss coefficient and its influence factors including: opening configuration and location, internal volumes, as well as wind speed and approaching flow turbulence. A simplified formula was presented to predict loss coefficient, therefore an approximate relationship between the standard deviation of internal and external pressures can be estimated using Vickery's approach. The study shows that the loss coefficient governs the peak response of the internal pressure spectrum which, in turn, will directly influence the standard deviation of the fluctuating internal pressure. The approaching flow characteristic and opening location have a remarkable effect on the parameter $C_L$.

소결조건이 Mn-Zn Ferrites의 전자기적 물성에 미치는 효과 (Effect of Sintering Conditions on the Electromagnetic Properties of Mn-Zn Ferrites)

  • 최윤호;신명승;한승기;한영호
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.561-568
    • /
    • 1997
  • The effects of sintering temperature and oxygen partial pressure on the electromagnetic properties of Mn-Zn ferrites were investigated. The grain increased with increasing temperature. The power loss at 100 kHz was decreased, while the power loss at 500 kHz was increased as the grain size increased with sintering temperature. Sintering with low oxygen partial pressure at 115$0^{\circ}C$ resulted in high density and initial permeability, and decreased the power loss at 100 kHz and 500 kHz. The oxygen partial pressure lower than 10-2 atm. during heating, significantly suppressed the hysteresis loss. However, the oxygen activity did not affect the grain size of sintered cores.

  • PDF

챔퍼가 적용된 타공판의 압력 강하 특성에 대한 연구 (Effects of Chamfered Perforated Plate on Pressure Loss Characteristics)

  • 유경식;이현규;조진수
    • 한국항공우주학회지
    • /
    • 제47권11호
    • /
    • pp.779-786
    • /
    • 2019
  • 본 연구에서 챔퍼가 적용된 타공판의 압력 강하특성에 대한 연구를 진행하였다. 타공판 홀의 입구와 출구에 각각 챔퍼를 적용하였다. 타공판의 패턴이 압력 강하특성에 미치는 영향에 대하여 관찰하였다. 타공판 홀의 입구와 출구에 챔퍼 각도를 변경해 가며 압력 강하 특성을 비교하였다. 레이놀즈 수에 따른 강하특성을 확인하였다. 타공판 홀 입구에 적용된 챔퍼의 각도가 증가함에 따라 압력강하계수가 감소하였지만 특정 각도 이후에서 압력강하계수가 증가하는 것을 확인하였다. 타공판홀 출구에 적용된 챔퍼 형상의 경우 특정 각도와는 상관없이 압력 강하계수가 증가하였다. 동일한 개공률의 타공판에서 삼각 및 사각 패턴에 따른 압력 강하특성은 동일하였다. 본 연구에서 설정한 레이놀즈 수 범위 내에서 압력 강하특성에 대한 레이놀즈 수의 영향은 없는 것으로 확인하였다.

삼음교(三陰交) 자극이 초산부(初産婦)의 분만(分娩) 소요시간과 실혈량(失血量)에 미치는 효과(效果) (Effects of San-Yin-Jio(SP-6) pressure on duration of delivery time and quantity of blood loss for primipara)

  • 김우환;김원일;이경희;윤현민
    • Journal of Acupuncture Research
    • /
    • 제20권5호
    • /
    • pp.82-92
    • /
    • 2003
  • Objective: To appreciate the effect of San-Yin-Jiao(SP-6) pressure on duratof delivery time and quantity of blood loss in order to verify the possibility of application to clinic of San-Yin-Jiao pressure. Methods: The design of this study is nonequivalent control group non- synchronized design. The subjects are 39 persons who are made up of SP-6 pressure applied(experimental) group 20 persons and to control group 19 persons. Collected data were analyzed as frequency, percentage, t-test, $x^2-test$ using SPSS 10.0 WIN Program. Conclusions: San-Yin-Jiao(SP-6) pressure not only make short duration of delivery time, but also decline quantity of blood loss in effect. 1. It could be necessary that the study of the effects of San-Yin-Jio(SP-6) pressure on duration of delivery time and quantity of blood loss for primipara be done repeatedly. 2. It could be necessary to increase this sort of study through free random experimental design in order to generalize this experimental result.

  • PDF

폭방향으로 분사되는 막냉각 제트의 3차원 유동특성 및 압력손실 (Three-dimensional flow and pressure loss of a film-cooling jets injected in spanwise direction)

  • 이상우;김용범
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1363-1375
    • /
    • 1996
  • Oil-film flow visualizations and three-dimensional flow measurements using a five-hole probe have been conducted to investigate three-dimensional flow characteristics and total pressure losses of a row of film-cooling jets injected in spanwise direction. For several span-to-diameter ratios, experiments are performed in the case of three velocity ratios of 0.5, 1.0 and 1.5. The flow measurements show that downstream flow due to the injection is characterized by a single streamwise vortex instead of a pair of counter-rotating vortices, which appear in the case of streamwise injection, and the vortex strength strongly depends on the velocity ratio. Regardless of the velocity*y ratio, presence of the spanwise film-cooling jets always produces total pressure loss, which is pronounced when the velocity ratio is large. It has also been found that the production of the total pressure loss is closely related to the secondary vortical flow. In addition, effects of the span-to-diameter ratio on the flow and total pressure loss are discussed in detail.