• Title/Summary/Keyword: Pressure contact

Search Result 1,701, Processing Time 0.032 seconds

Variation of Thermal Contact Resistance for a Corroded Plane Interface of Metals (금속의 평면 접촉면에서 표면부식에 의한 열접촉 저항의 변화)

  • Kim, C.J.;Kim, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.256-262
    • /
    • 1991
  • The corrosion effects on thermal contact resistance were experimentally studied for a given contact interface of a couple of metals. 2 cylindrically shaped test pieces, the one was carbon steel whose surface was machined by lathe and the other was stainless steel, ground, were come into contact under pressure, and then submerged to $HNO_3$ gas environment. While the corrosion process was going on, the thermal contact resistance was measured with time. The experiment was performed for 2 cases; 1) Highly compress the test pieces and then bring them to $HNO_3$ gas environment. 2) Anteriorly corrode the interface under low contact pressure and then increase the contact pressure. The results were as follows; In 1st. case of experiment, the thermal contact resistance seemed to be very stable, and showed low values with a tendancy of small decrease with time. But in 2nd. case the resistance was unstable and jumped to a value of 200-250% more then that expected for uncontaminated interface. More over it demonstrated some increase with time.

  • PDF

An Analysis on the Lubricating Films Formed on the Surfaces of the Line-Contact Bearings (선접촉 베어링면에 형성되는 윤활유막 특성 해석)

  • 이영제
    • Tribology and Lubricants
    • /
    • v.10 no.4
    • /
    • pp.75-81
    • /
    • 1994
  • In load sharing model, the load is supported by the contacting asperities and the lubricants. The asperity contact area of two sliding surfaces are relatively very small as compared with the apparent contact area. The asperity contact pressure is relatively higher than the lubricant pressure. With the combined effect of asperity and lubricant pressure, the surface roughness and temperature rise must be considered to calculate the lubricant film thickness of the line-contact bearing.

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • Kim, Seok-Nam;Kondo, Kyohei;Akasaka, Takashi
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

A Comparative Study on Eigen-Wear Analysis and Numerical Analysis using Algorithm for Adaptive Meshing (마모해석을 위한 고유치해석과 Adaptive Meshing 알고리듬을 이용한 수치해석 비교)

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.262-266
    • /
    • 2020
  • Herein, we present a numerical investigation of wear analysis of sliding systems with a constant speed subjected to Archard's wear law. For this investigation, we compared two methods: eigen-wear analysis and adaptive meshing technique. The eigen-wear analysis is advantageous to predict the evolution of contact pressure due to wear using the initial contact pressure and contact stiffness. The adaptive meshing technique in finite element analysis is employed to obtain transient wear behavior, which needs significant computational resources. From the eigen-wear analysis, we can determine the appropriate element size required for finite element analysis and the time increment required for wear evolution by a dimensionless variable above a certain value. Since the prediction of wear depends on the maximum contact pressure, the finite element model should have a reasonable representation of the maximum contact pressure. The maximum contact pressure and wear amount according to this dimensionless variable shows that the number of fine meshes in the contact area contributes more to the accuracy of the wear analysis, and the time increment is less sensitive when the number of contact nodes is significantly larger. The results derived from a two-dimensional wear model can be applied to a three-dimensional wear model.

Critical Shoulder Height of Raceway in Ball Bearing Considering Elastohydrodynamic Lubrication

  • Kim, Kyeongsoo;Kim, Taewan
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, the effects of Elasto-hydrodynamic lubrication pressure on the critical shoulder height of raceway in an angular contact ball bearing were investigated. Both 3D contact analyses using an influence function and the EHL analysis were conducted for the contact geometry between the ball and raceways. The pressure distributions by 3D contact analysis and EHL analysis for an example bearing were compared. The effect of ellipse truncation on the minimum film thickness also investigated from EHL analysis. The critical shoulder height in the dry contact and the EHL state were compared for various applied loads. It is shown that when the ellipse truncation occurs, the pressure spike for the EHL conjunction is higher than that for the dry contact, and its location moves more inward of the contact center. The steep pressure gradients would increase the flow rate, so in order to maintain flow continuity a significant reduction in film thickness and an abrupt rise in pressure occurs in the edge of shoulder. Significant reduction of the minimum film thickness occurs near the edge of shoulder. The critical shoulder heights in the EHL state are calculated as higher values compared with in the dry contact. This results shows that the determination of critical shoulder height by the EHL analysis is more proper.

Distribution of Ground Contact Pressure under Rigid Foundation of Large Pneumatic Caisson (대형 뉴메틱케이슨 강성기초의 접지압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.105-115
    • /
    • 2008
  • The records of field instrumentation, which have been performed on the pneumatic caisson used for substructure of the Youngjong Grand Bridge, were analyzed to investigate the ground contact pressure under rigid foundation of large pneumatic caisson embedded in various ground layers. During sinking the pneumatic caisson, the resisting force was mobilized against sinking the caisson at the contact area between bottom of the caisson and the ground. The resisting force could be measured by the reaction force gauges instrumented under the edge of bottom of the pneumatic caisson. And the ground contact pressure could be estimated by use of the measuring records of the resisting force. The ground contact pressure under rigid foundation of large pneumatic caisson shows concave distribution on bedrock, while convex distribution was shown in marine deposit soil layer as well as weathered rock layer. And, the ground contact pressure in various ground layers was distributed axis-symmetrically. The distribution shape of the ground contact pressure determined by the maximum pressure acting on foundation of the large pneumatic caisson showed good coincidence with the distribution shape proposed for rigid foundation by Kgler(1936) and Fang(1991).

The Elastic Contact Analysis of 3D Rough Surface including the Kurtosis (Kurtosis를 고려한 3차원 거친 표면의 탄성 접촉 해석)

  • 김태완;강민호;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.34-41
    • /
    • 2000
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian distrubution. So, in this study, contact simulation are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface censidering the kurtosis is generated numerically, And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

Finite Element Analysis of Hertzian Contact Problem (Hertz 접촉 문제의 유한 요소 해석)

  • Ko, Dong-sun;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.81-88
    • /
    • 2008
  • Generally, Hertz theory is used to analyze the contact problem of two bodies. It is simple derivation of solution in the contact part. And calculation time is short Moreover, it can mean well that many wear occurs relatively. However, material property becomes plastic deformation when large perpendicular pressure acts on a small contact surface product. In this case, Hertz theory is inapplicable. Therefore this thesis carried the finite element analysis in consideration of material elasticitystrain and the shape of the geometric from contact point. And it compared with Hertz theory that change of the contact surface and contact pressure.

  • PDF

Effects of Combination of the Load and the Apparent Area of Contact on Sliding Wear behavior of Mild Steel in a Pin-on-disc Type Apparatus (Pin-on-Disc식 미끄럼마모시험 시 마모 거동에 미치는 접촉면적 및 하중 조합의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • The effects of contact pressure on the sliding wear behavior of mild steel in a pin-on-disc type apparatus were investigated. Sliding wear tests were conducted with various combinations of the load and apparent area of contact. The wear behavior of mild steel as a function of sliding speed was independent of contact pressure. However, the wear rate at different sliding speeds was influenced by the load regardless of the apparent area of contact. This was attributed to the fact that there may be no difference in the real area of contact for any combination of the load and apparent area of contact.