• 제목/요약/키워드: Pressure Wave Mode

검색결과 122건 처리시간 0.024초

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구 (Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system)

  • 구가람;정철웅
    • 한국음향학회지
    • /
    • 제41권6호
    • /
    • pp.705-712
    • /
    • 2022
  • 감압밸브에서 발생하는 급격한 압력저하는 강한 소음원으로 작용하여 배관을 따라 압축성 압력섭동을 전파시키며, 이는 음향유기진동의 가진원으로 작용한다. 따라서 본 연구에서는 감압밸브가 있는 배관 시스템에서 곡관에 의한 압축성 압력섭동의 저감 효과를 확인할 수 있는 수치기법을 개발하였다. 배관 내 밀도 변화에 의한 음향파 성분을 모사하기 위해 고정밀 해석기법인 비정상 압축성 대와류모사 기법을 적용하였으며, 아격자 모델로는 Smagorinsky-Lilly 모델을 적용하였다. 배관을 따라 전파되는 압축성 압력섭동 성분을 유동장 정보로부터 추출하기 위하여 파수-주파수 분석을 수행하였으며, 곡관을 기준으로 상류방향 배관과 하류방향 배관의 벽면 압력을 활용하였다. 이를 통해 평면파 성분과 n=1에 해당하는 모드 성분이 하류 방향을 따라 강하게 나타나는 것을 확인하였으며, 곡관을 전후로 전체 음향파워가 3 dB 저감되는 것을 확인함으로써 곡관에 의한 압축성 압력섭동 저감 효과를 확인하였다.

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

메탄/공기 예혼합화염의 동역학적 거동과 정상초음파의 교반 (Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame)

  • 서항석;이상신;김정수
    • 한국추진공학회지
    • /
    • 제16권3호
    • /
    • pp.16-23
    • /
    • 2012
  • 정상초음파의 교반이 메탄/공기 예혼합화염의 동역학적 거동에 미치는 영향을 규명하는 실험 결과를 본 연구에서 제시한다. 슐리렌 기법을 이용하여 전파하는 화염을 가시화하였고, 이미지 후처리를 통해 정상초음파 유무에 따른 화염선단의 전파속도를 상세히 관찰하였다. 전파속도는 이론당량비에서 정상 초음파가 교반하는 경우에 크게 증가하였으며, 당량비가 연소 상한계 혹은 연소 하한계로 벗어남에 따라 교반의 효과는 감소하였다. 정상초음파장은 화염 구조의 왜곡을 동반하고, 그 변이 형상은 교반하는 초음파장의 특성에 전적으로 종속하였다.

파력발전장치 설계를 위한후포 연안의 파랑 분석 및 스펙트럼 추정 (Wave Analysis and Spectrum Estimation for the Optimal Design of the Wave Energy Converter in the Hupo Coastal Sea)

  • 권혁민;조홍연;정원무
    • 한국해안·해양공학회논문집
    • /
    • 제25권3호
    • /
    • pp.147-153
    • /
    • 2013
  • 파력변환장치에는 여러 가지 형식이 있으며 지점흡수식이 가장 많이 연구되고 있다. 하지만, 국내외적으로 진동형 전력부이 형식의 설계를 위한 계통적 실측자료 분석 예는 찾기가 어렵다. 본 연구는 권 등(2010)에 의해 제안된 지점흡수식인 공진형 파동에너지 추출시스템에 작용하는 파랑외력을 산정하고자 한다. 본 연구는 경북 동해안에 위치한 후 포항 북방파제 전면수역에서 수압식 파고계를 이용하여 약 3년동안 관측한 자료(2002년 5월 1일~2005년 3월 29일)를 대상으로 시계열 스펙트럼을 분석하였다. 분석결과, 월별주기변동과 파고변동이 뚜렷하게 나타나며 월별 파력이 년 간 불균등하게 분포함을 알았다. 상시파랑의 평균 파형경사는 풍파영역인 0.02-0.04보다 작은 0.01이였다. 년 중 파의 평균주기의 최빈값은 5.31 sec 이며 본 주기에 해당하는 파고 중 최빈 파고는 0.32m이다. 첨두 주기의 발생확률은 이산형(bi-modal)으로 나타나며 4.47 sec와 6.78 sec에서 mode값을 보인다. 설계주기는 이러한 4개의 값으로부터 선택할 수 있다. 파고는 1m 이하가 약 95%를 차지하고 있다. 본 연구를 통하여 파력이 미약한 해역에서는 공진형 파력 시스템이 필요하며 파력의 월별 불균등 분포를 극복하기 위한 최적설계가 전력생산단지(Wave Energy Farm) 형성을 위한 주요한 과제임을 알았다. 본 연구는 상시파랑의 평균스펙트럼에 대하여 표준스펙트럼으로 표현이 불가능하여 3개의 매개변수로 표현이 가능한 새로운 스펙트럼형을 제안하였으며 파력부이에 의한 전력생산 예측과 피로해석을 위한 기본 자료를 제공할 수 있다.

소아안신탕(小兒安神湯)이 STRESS를 유발한 흰쥐의 적출심장(摘出心臟)에 미치는 영향 (Effects of Soaansintang(SOAT) on the hemodynamics and electrocardiogram of isolated rat hearts induced by electrical stimulation)

  • 이승준;이진용;김덕곤
    • 대한한방소아과학회지
    • /
    • 제14권2호
    • /
    • pp.1-32
    • /
    • 2000
  • It has long been known that SOAT is effective for sudden palpitation occurring unexpectedly in Oriental Medicine. However, effect of SOAT on the isolated heart has not been studied yet. The purpose of this study is to investigate the effect of SOAT on hemodynamics and ECG of isolated rat hearts induced by electrical stimulation using Langendorff perfusion apparatus for nonworking heart. SOAT extract was manufactured by water-alcohol precipitated method. Sprague-Dawley rats weighting $120{\sim}150g$ were used for the experiments, Subject animals were divided into four groups, which are consisted of 1) control(Group orally administered by normal saline 1ml for 14days), 2) sample A(Group orally administered by SOAT extract 1ml for 14days), 3) sample C(Group injected by SOAT extract 0.5ml after stimulation, 4) sample C(Group injected by SOAT extract 1ml after stimulation. To evluate the effects of SOAT on hemodynamics and ECG of isolated rat heart induced by stimulation, heart rate, left ventricular pressure, systolic power, diastolic power, coronary artery perfusion volume and ECG were measured using Langendorff apparatus in both stimulation mode(5 volts, 450 beats/min) and arrythmic mode(5 volts, 420 beats/min including 60 beats/min) The results obtained are as follows : 1. After receiving stressful electrical stimuli, isolated heart showed the heart rate, left ventricular pressure, systolic power, diastolic power, coronary artery perfusion volume were all decreased temporarily, but perfusion continued longer recovery to the control state appeared. However, the coronary artery perfusion volume diminished continuously. 2. The heart rates did not change significantly with both stimulation mode and arrhythmic mode, among experimental groups. 3. The left ventricular pressure showed with both stimulation mode and arrhythmic mode, the significant changes(p<0.05) especially in the injection sample group. In case of stimulation mode, low concentration injection group(0.5ml) was more significantly increased rather than high concentration group(1ml) and in case of arrhythmic mode, high density group(1ml) was so increased than the other(0.5ml). 4. For the systolic power and diastolic power, no significant changes were noticed in the stimulation mode, but in the arrhythmic mode of injection sample groups, significant change(p<0.05) was noticed in both systolic power and diastolic power. Specially the high concentration group(1ml) showed more significant increase than the low concentration group. 5. For the coronary artery perfusion volume, no significant change difference among sample groups was observed in both the stimulation mode and the arrhythmic mode. 6. For the ECG recordings, arrhythmia was induced by electrical stimulus of arrythmia mode and after the stimulus was removed, irregular wave appeared temporarily, but as perpusion continued, recovery to the control state was abtained like the stimulation mode. According to the above results, SOAT significantly changed the hemodynamic data from the electrically stressed, isolated hearts of connected Langendorff perfusion apparatus and we propose SOAT has the direct effects on the muscular function of heart.

  • PDF

무전지 SAW 기반 마이크로 통합센서 및 무선 측정기술 개발 (Development of Batteryless SAW-based Integrated Microsensor and Wireless Measurement Technique)

  • 오해관;김태현;왕웬;양상식;이기근
    • 전기학회논문지
    • /
    • 제56권8호
    • /
    • pp.1430-1435
    • /
    • 2007
  • We developed a 440MHz surface acoustic wave (SAW) microsensor integrated with pressure-temperature sensors and ID tag. Two piezoelectric substrates were bonded, in which ${\sim}150\;{\mu}m$ cavity was structured. Four sides were completely sealed by JSR photoresist (PR). Pressure sensor was placed on the top substrate, whereas ill tag and temperature sensor were placed on the bottom substrate. Using network analyzer, the developed microsensor was wirelessly tested. Sharp reflection peaks with high S/N ratio, small signal attenuation, and small spurious peaks were observed. All the reflection peaks were well matched with the coupling of mode (COM) simulation results. With a 10mW RF power from the network analyzer, a ${\sim}1$ meter readout distance was observed. Eight sharp ON reflection peaks were observed for ID tag. Temperature sensor was characterized from $20^{\circ}C$ to $200^{\circ}C$. A large phase shift per unit temperature change was observed. The evaluated sensitivity was ${\sim}10^{\circ}/^{\circ}C$.

강한 음향장에 구속된 고압 액적의 연소 (Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode)

  • 김성엽;신현호;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

다양한 경계 형상에 따른 구조-음향 연성계의 음향특성 (The Effects of the Boundary Shapes on the Structural-acoustic Coupled System)

  • 서희선;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.480-485
    • /
    • 2004
  • If a wall separates the bounded and unbounded spaces, then the wall's role in transporting the acoustic characteristics of the two spaces is not well defined. In this paper, we attempted to see how the acoustic characteristical of two spaces are really affected by the spatial characteristics of the wall. In order to understand coupling mechanism, we choose a finite space and a semi-infinite space separated by the flexible or rigid wall and an opening. A volume interaction can be occurred in structure boundary and a pressure interaction can be happened in the opening boundary. For its simplicity, without loosing generality, we use rather simplified rectangle model instead of generally shaped model. The source impedance is presented to the various types of boundaries. The distributions of pressure and active intensity are also presented at the cavity and structure-dominated modes. The resulting modification, shifts of mode1 frequencies and changing of standing wave patterns to satisfy both coupled boundary conditions and governing equations, are presented.

  • PDF