• Title/Summary/Keyword: Pressure Strain

Search Result 1,474, Processing Time 0.023 seconds

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

A study on the elastic-plastic analysis and fracture behavior of pressure vessel (내외압을 받는 압력용기의 탄소성 해석과 파괴거동에 대한 고찰)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.19-29
    • /
    • 1988
  • This paper reports on the elatic-plastic analysis and fracture behavior of cylinder with outer surface crack which is under external or internal pressure. For the studuty of crack length effects in cylinder, ratios of crack lengths to finite thickness (a/t) are dertermined 0.3, 0.4, 0.5. For the study of curvature effects in cylinders, ratios of mean diameter to finite thicknees (Rm/t) are determined 10.0, 15.0, 20.0. Analysis is conduceted using the theory of fracture mechanics and two dimensional finite element solution assuming the axi-symmetrical plane strain conditon. Main results of this study are as follows. 1) It is known from this paper that elastic-plastic strain is initiated near crack tip and enlarged between crack tip and inner side of cylinder. 2) $K_{1}$ of cylinder under external or internal pressure is evaluated memebrane stress .root..pi.* crack length. The results of this study are inclined to Lomacky's results and Kobayshi's result. 3) Distribution of stress near crack tip is looked higher than of other zone, as crack length of equal model is longer, and as diameter of cylinder is longer. 4) When other conditions are equal, displacemenet near crack tip is looked duller, as length is longer.

  • PDF

Inactivation of Campylobacter jejuni using Radio-frequency Atmospheric Pressure Plasma on Agar Plates and Chicken Hams

  • Kim, Joo-Sung;Lee, Eun-Jung;Cho, Eun-Ah;Kim, Yun-Ji
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.317-324
    • /
    • 2013
  • Radio-frequency driven atmospheric pressure plasma using argon gas was studied in the inactivation of Campylobacter jejuni in order to investigate its applicability. First, the inactivation study was conducted on an agar surface. C. jejuni NCTC11168 was reduced by more than 7 Log CFU after an 88 s treatment. Another strain, ATCC49943, was studied; however, the inactivation was less efficient, with a 5 Log CFU reduction after a 2 min treatment. Then, chicken breast ham was studied at the $10^6$ CFU inoculation level. The inactivation efficiency was much lower for both strains compared to that on the agar plates. C. jejuni NCTC11168 and ATCC49943 were reduced by 3 Log CFU after a 6 min treatment and by 1.5 Log CFU after a 10 min treatment, respectively. The scanning electron microscopy analysis indicated that C. jejuni cells were deformed or transformed into coccoid form under the plasma treatment. During the plasma treatment, the temperature of the samples did not rise above $43^{\circ}C$, suggesting that heat did not contribute to the inactivation. Meanwhile, water activity significantly decreased after a 10 min treatment (p<0.05). This study conveyed that radio-frequency atmospheric pressure plasma can effectively inactivate C. jejuni with strain-specific variation.

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

Failure simulation of nuclear pressure vessel under LBLOCA scenarios

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Kukhee Lim;Eung-Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2859-2874
    • /
    • 2024
  • This paper presents the finite element deformation and failure simulation of a typical Korean high-power reactor vessel under a severe accident characterized by large break loss of coolant (LBLOCA) with in-vessel retention of molten corium through external reactor vessel cooling (IVR-ERVC) conditions. Temperature distributions calculated using Modular Accident Analysis Program Version 5 (MAAP5) as thermal boundary conditions were used, and ABAQUS thermal and structural analyses were performed. After full ablation, the temperature of the inner surface in the thinnest section remained high (920 ℃), but the stress remained relatively low (less than 6 MPa). At the outer surface, the stress was as high as 250 MPa; however, the resulting plastic strain was small owing to the low temperature of 200 ℃. Variations in stress, inelastic strain, and temperature with time in the thinnest section suggest that the plastic and creep strains are saturated owing to stress relaxation, resulting in low cumulative damage. Thus, the lower head of the vessel can maintain its structural integrity under LBLOCA with IVR-ERVC conditions. The sensitivity analysis of internal pressure indicates the occurrence of failure in the thinnest section at an internal pressure >9.6 MPa via local necking followed by failure due to high stresses.

Effect of Temperature and Pressure on the Oil Expression of Perilla Seed (온도와 압력이 들깨종자의 압착착유에 미치는 영향)

  • Min, Young-Kyoo;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.28-32
    • /
    • 1993
  • In order to elucidate the temperature and pressure effect on the oil expression of perilla seed, recovery of expressed oil (REO) and volumetric strain of both roasted and unroasted perilla seeds were observed at different temperature, pressure and for different periods of press. In this experiment, moisture content of perilla seed was adjusted to 2.5% and temperature used were 30, 40, 50 and $60^{\circ}C$. Pressure applied were 10, 30, 50 and 70 MPa, and periods of press were 5, 7, 9 and 11 min. As temperature and pressure were increased or periods of press was lengthened, REO and volumetric strain of pressed cake were increased. Maximum REO of unroasted perilla seeds were found to be 85.59% and those of roasted perilla seeds be 85.30%, at 70 MPa, $60^{\circ}C$, and for 11 min. Viscosity of expressed oil were exponentially dependent on temperature and REO were increased as viscosity was decreased. From statistical analysis between effects of expression factors and REO and volumetric strain of pressed cake, importance of their effects was decreased in the order of pressure, temperature, $temperature{\times}pressure$ and periods of press. The multiple regression equation between REO(Y) and temperature (T), pressure (P), and periods of press (D) were as follows; $Y=7.95+36.85P+1.12T^2-0.55TP-5.08P^2\;r^2=0.97$ for unroasted perilla seed (p<0.01), $Y=4.50T+39.23P+0.83T^2-1.71P-5.07P^2\;r^2=0.99$ for roasted perilla seed (p<0.01).

  • PDF

Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test (CP-Ti의 동적거동에 미치는 온도의 영향)

  • Lee, Su-Min;Seo, Song-Won;Park, Kyoung-Joon;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.

Modeling of Superplastic Forming Process for Aluminum Alloys with Strain Hardening Effect (가공경화를 고려한 알루미늄 함금의 초소성성형공정해석)

  • 권용남;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.172-184
    • /
    • 1996
  • Superplastic forming of thin sheet into complex shape is an important manufacturing process especially in aerospace industry. The main interest in modeling the superplastic forming process is to predict the forming pressure cycle to maintain optimum strain rate and the resulting thickness distribution. Many researchers have attemped to model superplastic forming using the various techniques including finite element method. But in most of their researches have disregarded the strain hardening effect which which occurs in several superplastic materials. In this study ABAQUS finite element code was used for prediction of process variables for axisymmetric cup forming of Supral 100 and 7075Al alloys considereing strain hardening. The performance of numerical results were compared with the experimental results.

  • PDF

Effects of temperature on the ratcheting behavior of pressurized 90° elbow pipe under force controlled cyclic loading

  • Chen, Xiaohui;Wang, Xingang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.473-485
    • /
    • 2017
  • Ratcheting behavior of $90^{\circ}$ elbow piping subject to internal pressure 20 MPa and reversed bending 20 kN was investigated using experimental method. The maximum ratcheting strain was found in the circumferential direction of intrados. Ratcheting strain at flanks was also very large. Moreover, the effect of temperature on ratcheting strain of $90^{\circ}$ elbow piping was studied through finite element analysis, and the results were compared with room condition ($25^{\circ}$). The results revealed that ratcheting strain of $90^{\circ}$ elbow piping increased with increasing temperature. Ratcheting boundary of $90^{\circ}$ elbow piping was determined by Chaboche model combined with C-TDF method. The results revealed that there was no relationship between the dimensionless form of ratcheting boundary and temperature.

Solution for surrounding rock of strain-softening considering confining pressure-dependent Young's modulus and nonlinear dilatancy

  • Liang, Peng;Gao, Yongtao;Zhou, Yu;Zhu, Chun;Sun, Yanhua
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.277-290
    • /
    • 2020
  • This paper presents an elastic-plastic solution for the circular tunnel of elastic-strain softening behavior considering the pressure-dependent Young's modulus and the nonlinear dilatancy. The proposed solution is verified by the results of the field measuring and numerical simulation from a practical project, and a published closed-form analysis solution. The influence of each factor is discussed in detail, and the ability of Young's modulus and dilatancy characterizing the mechanical response of surrounding rock is investigated. It is found that, in low levels of support pressure, adopting the constant Young's modulus model will seriously misestimate the surrounding rock deformation. Using the constant dilatancy model will underestimate the surrounding rock deformation. When adopting the constant dilatancy model, as the dilation angle increases, the range of the plastic region increases, and the surrounding rock deformation weakens. When adopting the nonlinear dilatancy, the plastic region range and the surrounding rock deformation are the largest. The surrounding rock deformation using pressure-dependent Young's modulus model is between those resulted from two constant Young's modulus models. The constant α of pressuredependent Young's modulus model is the main factor affecting the tunnel displacement. The influence of α using a constant dilatancy model is much more apparent than that using a nonlinear dilatancy model.