Browse > Article
http://dx.doi.org/10.12989/gae.2020.22.4.277

Solution for surrounding rock of strain-softening considering confining pressure-dependent Young's modulus and nonlinear dilatancy  

Liang, Peng (Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing)
Gao, Yongtao (Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing)
Zhou, Yu (Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mines, University of Science and Technology Beijing)
Zhu, Chun (School of Earth Science and Engineering, Hohai University)
Sun, Yanhua (School of Civil Engineering, Guizhou University of Engineering Science)
Publication Information
Geomechanics and Engineering / v.22, no.4, 2020 , pp. 277-290 More about this Journal
Abstract
This paper presents an elastic-plastic solution for the circular tunnel of elastic-strain softening behavior considering the pressure-dependent Young's modulus and the nonlinear dilatancy. The proposed solution is verified by the results of the field measuring and numerical simulation from a practical project, and a published closed-form analysis solution. The influence of each factor is discussed in detail, and the ability of Young's modulus and dilatancy characterizing the mechanical response of surrounding rock is investigated. It is found that, in low levels of support pressure, adopting the constant Young's modulus model will seriously misestimate the surrounding rock deformation. Using the constant dilatancy model will underestimate the surrounding rock deformation. When adopting the constant dilatancy model, as the dilation angle increases, the range of the plastic region increases, and the surrounding rock deformation weakens. When adopting the nonlinear dilatancy, the plastic region range and the surrounding rock deformation are the largest. The surrounding rock deformation using pressure-dependent Young's modulus model is between those resulted from two constant Young's modulus models. The constant α of pressuredependent Young's modulus model is the main factor affecting the tunnel displacement. The influence of α using a constant dilatancy model is much more apparent than that using a nonlinear dilatancy model.
Keywords
circular tunnel; strain-softening behavior; Young's modulus; nonlinear dilatancy; generalized Hoek-Brown yield criterion;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Wang, J., Ning, J.G., Qiu, P.Q., Yang, S. and Shang, H.F. (2019), "Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study", Geomech. Eng., 17(4), 375-383. https://doi.org/10.12989/gae.2019.17.4.375.   DOI
2 Wang, X., Yuan, W., Yan, Y.T. and Zhang, X. (2020a), "Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code", Geomech. Eng., 21(3), 259-268. https://doi.org/10.12989/gae.2020.21.3.259.   DOI
3 Yin, Q., Ma, G.W., Jing, H.W., Wang, H.D., Su, H.J., Wang, Y.C. and Liu, R.C. (2017), "Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study", J. Hydrol., 555, 169-184. https://doi.org/10.1016/j.jhydrol.2017.10.019.   DOI
4 You, M.Q. (2003), "Effect of confining pressure on the Young's modulus of rock specimen and the friction in fissures", Rock Soil Mech., S2, 167-170. https://doi.org/10.16285/j.rsm.2003.s2.038.
5 Yuan, S.C. and Harrison, J. (2004), "An empirical dilatancy index for the dilatant deformation of rock", Int. J. Rock Mech. Min. Sci., 41(4), 679-686. https://doi.org/10.1016/j.ijrmms.2003.11.001.   DOI
6 Zhang, C.G., Zhao, J.H., Zhang, Q.H. and Hu, X.D. (2012a), "A new closed-form solution for circular openings modeled by the unified strength theory and radius-dependent Young's modulus", Comput. Geotech., 42, 118-128. https://doi.org/10.1016/j.compgeo.2012.01.005.   DOI
7 Zhang, N., Liu, W., Zhang, Y., Shan, P.F. and Shi, X.L. (2020a), "Microscopic pore structure of surrounding rock for underground strategic petroleum reserve (SPR) caverns in bedded rock salt", Energies, 13(7), 1565. https://doi.org/10.3390/en13071565.   DOI
8 Zhang, Q., Jiang, B.S., Wu, X.S., Zhang, H.Q. and Han, L.J. (2012b), "Elasto-plastic coupling analysis of circular openings in elasto-brittle-plastic rock mass", Theor. Appl. Fract. Mech., 60(1), 60-67. https://doi.org/10.1016/j.tafmec.2012.06.008.   DOI
9 Alejano, L.R. and Alonso, E. (2005), "Considerations of the dilatancy angle in rocks and rock masses", Int. J. Rock Mech. Min. Sci., 42(4), 481-507. https://doi.org/10.1016/j.ijrmms.2005.01.003.   DOI
10 Agar, J.G., Morgenstern, N.R. and Scott, J.D. (1987), "Shear strength and stress-strain behavior of Athabasca oil sand at elevated temperatures and pressures", Can. Geotech. J., 24(1), 1-10. https://doi.org/10.1139/t87-001.   DOI
11 Alejano, L.R., Alfonso, R.D. and Veiga, M. (2012), "Plastic radii and longitudinal deformation profles of tunnels excavated in strain-softening rock masses", Tunn. Undergr. Sp. Technol., 30, 169-182. https://doi.org/10.1016/j.tust.2012.02.017.   DOI
12 Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C. (2003), "Ground response curves for rock masses exhibiting strain-softening behaviour", Int. J. Numer. Anal. Meth. Geomech., 27(13), 1153-1185. https://doi.org/10.1002/nag.315.   DOI
13 Carranza-Torres, C. and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 36(6), 777-809. https://doi.org/10.1016/S0148-9062(99)00047-9.   DOI
14 Zhang, Q., Zhang, C.H., Jiang, B.S., Li, N. and Wang, Y.C. (2018), "Elastoplastic coupling solution of circular openings in strain-softening rock mass considering pressure-dependent effect", Int. J. Geomech., 18(1), 04017132. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001043.   DOI
15 Zhang, Y., Cao, S.G., Zhang, N. and Zhao, C.Z. (2020b), "The application of short-wall block backfill mining to preserve surface water resources in northwest China", J. Cleaner Prod., 261, 121232. https://doi.org/10.1016/j.jclepro.2020.121232.   DOI
16 Zhao, X.G. and Cai, M. (2010a), "A mobilized dilation angle model for rocks", Int. J. Rock Mech. Min. Sci., 47(3), 368-384. https://doi.org/10.1016/j. ijrmms.2009.12.007.   DOI
17 Brown, E.T., Bray, J.W. and Santarelli, F.J. (1989), "Influence of stress-dependent elastic moduli on stresses and strains around axisymmetric boreholes", Rock Mech. Rock Eng., 22(3), 189-203. https://doi.org/10.1007/BF01470986.   DOI
18 Zhao, X.G. and Cai, M. (2010b), "Influence of plastic shear strain and confinement-dependent rock dilation on rock failure and displacement near an excavation boundary", Int. J. Rock Mech. Min. Sci., 47(5), 723-738. https://doi.org/10.1016/j.ijrmms.2010.04.003.   DOI
19 Zou, J.F., Yang, T., Ling, W., Guo, W.J. and Huang, F.L. (2019), "A numerical stepwise approach for cavity expansion problem in strain-softening rock or soil mass", Geomech. Eng., 18(3), 225-234. https://doi.org/10.12989/gae.2019.18.3.225.   DOI
20 Brown, E.T., Bray, J.W., Ladanyi, B. and Hoek, E. (1983), "Ground response curves for rock tunnels", J. Geotech. Eng., 109(1), 15-39. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(15).   DOI
21 Carranza-Torres, C. and Fairhurst, C. (2000), "Application of the convergence-confnement method of tunnel design to rock masses that satisfy the hoek-brown failure criterion", Tunn. Undergr. Sp. Technol., 15(2), 187-213. https://doi.org/10.1016/S0886-7798(00)00046-8.   DOI
22 Chen, S.J., Yin, D.W., Jiang, N., Wang, F. and Zhao, Z.H. (2019), "Mechanical properties of oil shale-coal composite samples", Int. J. Rock Mech. Min. Sci., 123, 104120. https://doi.org/10.1016/j.ijrmms.2019.104120.   DOI
23 Cui, L., Sheng, Q., Zheng, J.J., Cui, Z., Wang, A. and Shen, Q. (2019), "Regression model for predicting tunnel strain in strain-softening rock mass for underground openings", Int. J. Rock Mech. Min. Sci., 119, 81-97. https://doi.org/10.1016/j.ijrmms.2019.04.014.   DOI
24 Cui, L., Zheng, J.J., Dong, Y.K., Zhang, B. and Wang, A. (2017), "Prediction of critical strains and critical support pressures for circular tunnel excavated in strain-softening rock mass", Eng. Geol., 224, 43-61. https://doi.org/10.1016/j.enggeo.2017.04.022.   DOI
25 Cui, L., Zheng, J.J., Zhang, R.J. and Dong, Y.K. (2015), "Elasto-plastic analysis of a circular opening in rock mass with confining stress-dependent strain-softening behaviour", Tunn. Undergr. Sp. Technol., 50, 94-108. https://doi.org/10.1016/j.tust.2015.07.001.   DOI
26 Feng, G., Wang, X.C., Wang, M. and Kang, Y. (2020b), "Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir", Eng. Fract. Mech., 107180. https://doi.org/10.1016/j.engfracmech.2020.107180.   DOI
27 Detournay, E. (1986), "Elasto-plastic model of a deep tunnel for a rock with variable dilatancy", Rock Mech. Rock Eng., 19(2), 99-108. https://doi.org/10.1007/BF01042527.   DOI
28 Fahimifar, A., Ghadami, H. and Ahmadvand, M. (2015), "The ground response curve of underwater tunnels, excavated in a strain-softening rock mass", Geomech. Eng., 8(3), 323-359. https://doi.org/10.12989/gae.2015.8.3.323.   DOI
29 Feng, G., Kang, Y., Wang, X.C., Hu, Y.Q. and Li, X.H. (2020a), "Investigation on the failure characteristics and fracture classification of shale under brazilian test conditions", Rock Mech. Rock Eng., 53, 3325-3340. https://doi.org/10.1007/s00603-020-02110-6.   DOI
30 Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 34, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.   DOI
31 Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, Ontario, Canada.
32 Huang, H., Babadagli, T., Chen, X., Li, H.Z. and Zhang, Y.M. (2020), "Performance comparison of novel chemical agents for mitigating water-blocking problem in tight gas sandstones", SPE. Reserv. Eval. Eng., 1-9. https://doi.org/10.2118/199282-PA.
33 Jiang, N., Wang, C.X., Pan, H.Y., Yin, D.W. and Ma, J.B. (2020), "Modeling study on the influence of the strip filling mining sequence on mining-induced failure", Energy Sci. Eng., 8(6), 2239-2255. https://doi.org/10.1002/ese3.660.   DOI
34 Park, K.H., Tontavanich, B. and Lee, J.G. (2008), "A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses", Tunn. Undergr. Sp. Technol., 23(2), 151-159. https://doi.org/10.1016/j.tust.2007.03.002.   DOI
35 Kaliszky, S. (1989), Plasticity: Theory and Engineering Applications, Elsevier, Amsterdam, The Netherlands.
36 Kulhawy, F.H. (1975), "Stress deformation properties of rock and rock discontinuities", Eng. Geol., 9(4), 327-350. https://doi.org/10.1016/0013-7952(75)90014-9.   DOI
37 Lee, Y.K. and Pietruszczak, S. (2008), "A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass", Tunn. Undergr. Sp. Technol., 23(5), 588-599. https://doi.org/10.1016/j.tust.2007.11.002.   DOI
38 Li, Y., Cao, S., Fantuzzi, N. and Liu, Y. (2015), "Elasto-plastic analysis of a circular borehole in elastic-strain softening coal seams", Int. J. Rock Mech. Min. Sci., 100(80), 316-324. https://doi.org/10.1016/j.ijrmms.2015.10.002.
39 Nawrocki, P.A. and Dusseault, M.B. (1995), "Modelling of damaged zones around openings using radius-dependent Young's modulus", Rock Mech. Rock Eng., 28(4), 227-239. https://doi.org/10.1007/BF01020228.   DOI
40 Ren, D.Z., Zhou, D.S., Liu, D.K., Dong, F.J., Ma, S.W. and Huang, H. (2019), "Formation mechanism of the upper triassic Yanchang formation tight sandstone reservoir in Ordos basin- Take Chang 6 reservoir in Jiyuan oil field as an example", J. Petrol. Sci. Eng., 178, 497-505. https://doi.org/10.1016/j.petrol.2019.03.021.   DOI
41 Ren, F.Q., Zhu, C. and He, M.C. (2020), "Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst", Rock Mech. Rock Eng., 53(1), 153-170. https://doi.org/10.1007/s00603-019-01897-3.   DOI
42 Santarelli, F.J. (1987), "Theoretical and experimental investigation of the stability of the axisymmetric borehole", Ph.D. Dissertation, University of London, London, U.K.
43 Tao, Z.G., Wang, Y., Zhu, C., Xu, H.X., Li, G. and He, M.C. (2019), "Mechanical evolution of constant resistance and large deformation anchor cables and their application in landslide monitoring", B. Eng. Geol. Environ., 78, 4787-4803. https://doi.org/10.1007/s10064-018-01446-2.   DOI
44 Shan, P.F. and Lai, X.P. (2020), "An associated evaluation methodology of initial stress level of coal-rock masses in steeply inclined coal seams, Urumchi coal field, China", Eng. Comput., 37(6), 2177-2192. https://doi.org/10.1108/EC-07-2019-0325.   DOI
45 Sharan, S.K. (2008), "Analytical solutions for stresses and displacements around a circular opening in a generalized Hoek-brown rock", Int. J. Rock Mech. Min. Sci., 45(1), 78-85. https://doi.org/10.1016/j.ijrmms.2007.03.002.   DOI
46 Shi, G.C., Yang, X.J., Yu, H.C. and Zhu, C. (2018), "Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression", Eng. Fract. Mech., 210, 13-28. https://doi.org/10.1016/j.engfracmech.2018.09.004.
47 Timoshenko, S.P. and Goodier, J.N. (1982), Theory of Elasticity, McGraw-Hill Book Co.
48 Wang, F.Y. and Qian, D.L. (2018), "Difference solution for a circular tunnel excavated in strain-softening rock mass considering decayed confinement", Tunn. Undergr. Sp. Technol., 82, 66-81. https://doi.org/10.1016/j.tust.2018.08.001.   DOI
49 Walton, G., Hedayat, A. and Rahjoo, M. (2019), "Relating plastic potential function to experimentally obtained dilatancy observations for geomaterials with a confinement-dependent dilation angle", Int. J. Geomech., 19(8). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001484.
50 Wang, C.X., Shen, B.T., Chen, J.T., Tong, W.X., Jiang, Z., Liu, Y. and Li, Y.Y. (2020b), "Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation", Geomech. Eng., 20(6), 485-495. https://doi.org/10.12989/gae.2020.20.6.485.   DOI