• Title/Summary/Keyword: Pressure Sintering Method

Search Result 138, Processing Time 0.024 seconds

Effect of Seeding on Microstructural Development of Silicon Nitride Ceramics (질화규소 세라믹스의 미세조직 형성에 미치는 Seed 첨가의 영향)

  • 이창주
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.133-138
    • /
    • 1998
  • The effect of $\beta$-$Si_3N_4$ seeding on microstructural development of silicon nitride based materials has been investigated. In particular, to observe more distinctly the abnormal grain growth in pressureless sintering, fine $\alpha$-$Si_3N_4$(mean particle size: 0.26 ${\mu}m$) powder classified by sedimentation method was used. It was possible to prepare silicon nitride with abnormally grown grains under low nitrogen pressure of 1 atm thanks to the heterogeneous nucleation on $Si_3N_4$ seed particles. The size and morphology of silicon nitride grains were strongly influenced by the presence of $\beta$-$Si_3N_4$ seed and overall chemical composition. For specimens with initially low $\beta$-content, the large grains grew without a significant impingement by other large grains. On the contrary, for specimens with initially high $\beta$-content, steric hindrance was effective. The resulting microstructure was less inhomogeneous and characterized by unimodal grain size distribution.

  • PDF

High-Frequency Induction-Heated Combustion Synthesis and Consolidation of Nanostructured NbSi2 from Mechanically Activated Powders

  • Kim, Byung-Ryang;Yoon, Jin-Kook;Nam, Kee-Seok;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.279-284
    • /
    • 2008
  • Dense nanostructured $NbSi_2$ was synthesized by high-frequency induction-heated combustion synthesis (HFIHCS) method within 1 minute in one step from mechanically activated Nb and Si powders. Highly dense $NbSi_2$ with relative density of up to 99% was simultaneously synthesized and consolidated under the combined effects of an induced current and mechanical pressure of 60 MPa. The average grain size and mechanical properties (hardness and fracture toughness) of the compound were investigated.

Phase Equilibria and Reaction Paths in the System Si3N4-SiC-TiCxN1-x-C-N

  • H.J.Seifert
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.18-35
    • /
    • 1999
  • Phase equilibria in the system Si3N4-TiC-TiCxN1-x-C-N were determined by thermodynamic calculations (CALPHAD-method). The reaction peaction paths for Si3N4-TiC and SiC-TiC composites in the Ti-Si-C-n system were simulated at I bar N2-pressure and varying terpreatures. At a temperature of 1923 K two tie-triangles (TiC0.34N0.66+SiC+C and TiC0.13N0.87+SiC+Si3N4) and two 2-phase fieds (TiCxN1-x+SiC; 0.13

New Co10Fe10Mn35Ni35Zn10 high-entropy alloy Fabricated by Powder Metallurgy (분말야금법으로 제조한 새로운 Co10Fe10Mn35Ni35Zn10 고엔트로피 합금)

  • Yim, Dami;Park, Hyung Keun;Tapia, Antonio Joao Seco Ferreira;Lee, Byeong-Joo;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.208-212
    • /
    • 2018
  • In this paper, a new $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ high entropy alloy (HEA) is identified as a strong candidate for the single face-centered cubic (FCC) structure screened using the upgraded TCFE2000 thermodynamic CALPHAD database. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA is fabricated using the mechanical (MA) procedure and pressure-less sintering method. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA, which consists of elements with a large difference in melting point and atomic size, is successfully fabricated using powder metallurgy techniques. The MA behavior, microstructure, and mechanical properties of the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA are systematically studied to understand the MA behavior and develop advanced techniques for fabricating HEA products. After MA, a single FCC phase is found. After sintering at $900^{\circ}C$, the microstructure has an FCC single phase with an average grain size of $18{\mu}m$. Finally, the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA has a compressive yield strength of 302 MPa.

Sintering and Mechanical Properties of Chromium Boride-chromium Carbide Composites

  • Matsushita, Jun-Ichi;Shimao, Kenji;Machida, Yoshiyuki;Takao, Takumi;Iizumi, Kiyokata;Sawada, Yutaka;Shim, Kwang-Bo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1104-1105
    • /
    • 2006
  • Several boride sintered bodies such as $TiB_2$, $ZrB_2$, and $SiB_6$ were previously reported. In the present study, the sinterability and physical properties of chromium boride $(CrB_2)$ containing chromium carbide $(Cr_3C_2)$ sintered bodies were investigated in order to determine its new advanced material. The samples were sintered at desired temperature for 1 hour in vacuum under a pressure by hot pressing. The relative density of sintered bodies was measured by Archimedes' method. The relative densities of $CrB_2$ addition of 0, 5, 10, 15 and 20 mass% $Cr_3C_2$ composites were 92 to 95%. The Vickers hardness of the $CrB_2$ with 10 and 15 mass% $Cr_3C_2$ composites were about 14 and 15 GPa at room temperature, respectively. The Vickers hardness at high temperature of the $CrB_2$ addition of 10 mass% $Cr_3C_2$ composite decreased with increasing measurement temperature. The Vickers hardness at 1273 K of the sample was 6 GPa. The Vickers hardness of $CrB_2$ addition of $Cr_3C_2$ composites was higher than monolithic $CrB_2$ sintered body. The powder X-ray diffraction analysis detected CrB and $B_4C$ phases in $CrB_2$ containing $Cr_3C_2$ composites.

  • PDF

Recycling Method of Used Indium Tin Oxide Targets (폐 인듐주석산화물 타겟의 재활용 기술)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.

Binder Removal by Supercritical $CO_2$ in Powder Injection Molded WC-Co (WC-Co계 분말사출성형에서 초임계$CO_2$에 의한 결합제 제거)

  • 김용호;임종성;이윤우;김소나;박종구
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • The conventional debinding process in metal injection molding is very long time-consuming and unfriendly environmental method. Especially, in such a case of injection molded parts from hard and fine metal powder, such as WC-Co, an extremely long period of time is necessary in the conventional slow binder removal process. On the other hand, supercritical debinding is thought to be the effective method which is appropriate to eliminate the aforementioned inconvenience in the prior art. The supercritical fluid has high diffusivity and density, it can penetrate quickly into the inside of the green metal bodies, and extract the binder. In this paper, super-critical debinding is compared with wicking debinding process. Wax-based binder system is used in this study. The binder removal rate in supercritical $CO_2$ have been measured at $65^{\circ}C$, 75$^{\circ}C$ in the pressure range from 20 MPa to 28 MPa. Pores and cracks in silver bodies after sintering were observed using SEM When the super-critical $CO_2$ debinding was carried out at 75$^{\circ}C$, almost all the wax (about 70 wt% of binder) was removed in 2 hours under 28 MPa and 2.5 hours under 25 MPa.

  • PDF

A Study on the Synthesis of Titanium Hydride by SHS(Self-propagating High-temperature Synthesis) Method and the Preparation of Titanium Powder (SHS법에 의한 티타늄 수소화물 합성 및 티타늄 분말 제조에 관한 연구)

  • Ha, Ho;Park, Seung-Soo;Lee, Hee-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.263-273
    • /
    • 1994
  • Titanium powder prepared by dehydrogenating the titanium hydride which is synthesized by reacting Ti-sponge (99.67%) with hydrogen using the self-propagating high-temperature synthesis method. In the synthesis of titanium hydride, the particle size of the product was found dependent on the amount of hydrogen incorporated into the titanium such that the particle size of titanium hydride decreased with increasing hydrogen pressure and after-burn time. In the dehydrogenation process, as the dehydrogenation time increase, the particle size of titanium powder increased due to partial melting and sintering of titanium particles.

  • PDF

Modeling the Relationship between Process Parameters and Bulk Density of Barium Titanates

  • Park, Sang Eun;Kim, Hong In;Kim, Jeoung Han;Reddy, N.S.
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.369-374
    • /
    • 2019
  • The properties of powder metallurgy products are related to their densities. In the present work, we demonstrate a method to apply artificial neural networks (ANNs) trained on experimental data to predict the bulk density of barium titanates. The density is modeled as a function of pressure, press rate, heating rate, sintering temperature, and soaking time using the ANN method. The model predictions with the training and testing data result in a high coefficient of correlation (R2 = 0.95 and Pearson's r = 0.97) and low average error. Moreover, a graphical user interface for the model is developed on the basis of the transformed weights of the optimally trained model. It facilitates the prediction of an infinite combination of process parameters with reasonable accuracy. Sensitivity analysis performed on the ANN model aids the identification of the impact of process parameters on the density of barium titanates.

Effect of Yield Strength and Morphology of Spray-dried $Al_2O_3/15v/o ZrO_2$ Granules on the Compaction Behaviour

  • Shin, Dong-Woo;Yoon, Dae-Hyun;Lim, Chang-Sung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.13-17
    • /
    • 1997
  • The densification of $Al_2$O$_3$/15v/o ZrO$_2$ (Zirconia Toughened Alumina: ZTA) to the 99% of theoretical density was attempted by controlling the processing parameters affecting the each processing step i.e., milling, spray-drying, forming and pressureless sintering. The ZTA processed under the identical conditions showed a large variation in the green and sintered densities, and the mechanical properties. The deviation of 4-point bending strength was more than 100MPa for the ZTA with ~99% of theoretical density. Moreover, the relative green and sintered densities were deviated greatly from the average value. This low reproducibility could be caused by the variation of spray-dried granule properties. Thus, the effect of yield strength and morphology of spray-dried ZTA granule on the green and sintered densities and the mechanical properties needs to be studied in detail. The objective of this work is to fine out the optimum condition of compaction pressure and compaction method depending on the properties of spray-dried granules.

  • PDF