DOI QR코드

DOI QR Code

New Co10Fe10Mn35Ni35Zn10 high-entropy alloy Fabricated by Powder Metallurgy

분말야금법으로 제조한 새로운 Co10Fe10Mn35Ni35Zn10 고엔트로피 합금

  • Yim, Dami (Department of Materials Science and Engineering, Center for High Entropy Alloys Pohang University of Science and Technology) ;
  • Park, Hyung Keun (Department of Materials Science and Engineering, Center for High Entropy Alloys Pohang University of Science and Technology) ;
  • Tapia, Antonio Joao Seco Ferreira (Department of Materials Science and Engineering, Center for High Entropy Alloys Pohang University of Science and Technology) ;
  • Lee, Byeong-Joo (Department of Materials Science and Engineering, Center for High Entropy Alloys Pohang University of Science and Technology) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Center for High Entropy Alloys Pohang University of Science and Technology)
  • 임다미 (포항공과대학교 신소재공학과) ;
  • 박형근 (포항공과대학교 신소재공학과) ;
  • ;
  • 이병주 (포항공과대학교 신소재공학과) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2017.10.30
  • Accepted : 2017.11.08
  • Published : 2018.06.28

Abstract

In this paper, a new $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ high entropy alloy (HEA) is identified as a strong candidate for the single face-centered cubic (FCC) structure screened using the upgraded TCFE2000 thermodynamic CALPHAD database. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA is fabricated using the mechanical (MA) procedure and pressure-less sintering method. The $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA, which consists of elements with a large difference in melting point and atomic size, is successfully fabricated using powder metallurgy techniques. The MA behavior, microstructure, and mechanical properties of the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA are systematically studied to understand the MA behavior and develop advanced techniques for fabricating HEA products. After MA, a single FCC phase is found. After sintering at $900^{\circ}C$, the microstructure has an FCC single phase with an average grain size of $18{\mu}m$. Finally, the $Co_{10}Fe_{10}Mn_{35}Ni_{35}Zn_{10}$ HEA has a compressive yield strength of 302 MPa.

Keywords

References

  1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsai and S. Y. Chang: Adv. Eng. Mater., 6 (2004) 299. https://doi.org/10.1002/adem.200300567
  2. J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsai and S. Y. Chou: Metall. Mater. Trans. A, 35 (2004) 2533 https://doi.org/10.1007/s11661-006-0234-4
  3. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent: Mater. Sci. Eng. A, 375-377 (2004) 213. https://doi.org/10.1016/j.msea.2003.10.257
  4. J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang and H. C. Chen: Wear, 261 (2006) 513. https://doi.org/10.1016/j.wear.2005.12.008
  5. Y. H. Jo, S. Jung, W. M. Choi, S. S. Sohn, H. S. Kim, B. J. Lee, N. J. Kim and S. Lee: Nat. Commun., 15719 (2017) 1.
  6. O. N. Senkov, G. B. Wilks, J. M. Scott and D. B. Miracle: Intermetallics, 19 (2011) 698. https://doi.org/10.1016/j.intermet.2011.01.004
  7. P. P. Bhattacharjee, G. D. Sathiaraj, M. Zaid, J. R. Gatti, C. Lee, C. W. Tsai and J. W. Yeh: J. Alloys Compd., 587 (2014) 544. https://doi.org/10.1016/j.jallcom.2013.10.237
  8. S. Singh, N. Wanderka, B. S. Murty, U. Glatzel and J. Banhart: Acta Mater., 59 (2011) 182. https://doi.org/10.1016/j.actamat.2010.09.023
  9. T. T. Shun and Y. C. Du: J. Alloys Compd., 478 (2009) 269. https://doi.org/10.1016/j.jallcom.2008.12.014
  10. S. H. Joo, H. Kato, M. J. Jang, J. Moon, E. B. Kim, S. J. Hong and H.S. Kim: J. Alloys Compd., 698 (2017) 591. https://doi.org/10.1016/j.jallcom.2016.12.010
  11. D. Yim, W. Kim, S. Praveen, M. J. Jang, J. W. Bae, J. Moon, E. Kim, S. J. Kim and H. S. Kim: Mater. Sci. Eng. A, 708 (2017) 291. https://doi.org/10.1016/j.msea.2017.09.132
  12. S. Praveen, J. Basu, S. Kashyap and R. S. Kottad: J. Alloys Compd., 662 (2016) 361. https://doi.org/10.1016/j.jallcom.2015.12.020
  13. W. Choi, S. Jung, Y. H. Jo, S. Lee and B. Lee: Met. Mater. Int., 23 (2017) 839. https://doi.org/10.1007/s12540-017-6701-1
  14. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  15. Y. L. Chen, Y. H. Hu, C. A. Hsieh, J. W. Yeh and S. K. Chen: J. Alloys Compd., 481 (2009) 768. https://doi.org/10.1016/j.jallcom.2009.03.087
  16. D. A. Porter and K. E. Easterling: Annu. Rev. Mater. Sci., 3 (1973) 327. https://doi.org/10.1146/annurev.ms.03.080173.001551
  17. W. M Choi, S. Jung, Y. H. Jo, S. Lee, and B. J. Lee: Mat. Mater. Int., 23 (2017) 839. https://doi.org/10.1007/s12540-017-6701-1
  18. D. A. Porter and K. E. Easterling: Annu. Rev. Mater. Sci., 3 (1973) 327. https://doi.org/10.1146/annurev.ms.03.080173.001551
  19. X. Yang and Y. Zhang: Mater. Che. Phys., 132 (2012) 233. https://doi.org/10.1016/j.matchemphys.2011.11.021
  20. S. Guo and C. T. Liu: Prog. Nat. Sci. Mater. Int., 21 (2011) 433. https://doi.org/10.1016/S1002-0071(12)60080-X
  21. S. Guo, C. Ng, J. Lu and C. T. Liu: J. Appl. Phys., 109 (2011) 1.
  22. O. N. Senkov, C. Woodward, and D. B. Miracle, JOM, 66 (2014) 2030. https://doi.org/10.1007/s11837-014-1066-0