• Title/Summary/Keyword: Pressure Distribution

Search Result 4,210, Processing Time 0.042 seconds

A Study on the Structure Analysis Optimization of Die Cam Drive Considering the Thin Plate Hardening (박판판재 경화를 고려한 다이 캠 드라이브의 구조해석 최적화에 대한연구)

  • Lee, Jong-Bae;Kim, Seon-Sam;Woo, Chang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5769-5777
    • /
    • 2015
  • According to the forming or bending deformation in the press die, the thin plate occurs a work-hardening, the sheet hardening and cam unit's deformation causes incomplete forming during the cam molding process by the reacting spring forces. This study treated the input parameters of the stress and strain as given properties and also used Cam forming pressure considering the sheet hardening in the forming process of the aluminum sheet. The Hyperstudy are operated be linked with the Abaqus of the finite element analysis tool and the shape of Cam were carried out with non-linear shape optimization analysis. As a result removing the deformation of plate, the cam shape were optimized under conditions reduced deformation, having a minimum stress range and the minimum deformation. Therefore, a stress-strain curve and a normal distribution of stress-thickness can be obtained and optimization could be obtained for the shape of the stress and strain on the die plate hardened cam considering the thickness and reaction force of gas spring as iteration process.

Optical Characteristic Analysis of Electrodeless Lamp due to the Density Difference of Mercury (수은의 밀도차에 의한 무전극 램프의 광특성 분석)

  • Lee, Kye-Seung;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • For the analysis of the optical characteristics of electrodeless lamps, all the lamp surface temperatures have been treated the same. However, the interpretation of optical properties in this way has not been sufficient in terms of accuracy. In this paper, to overcome this problem, we divided the inside of the bulb into two parts, hot spot and cold spot, and analyzed the density difference of mercury by different temperatures. Here, it is assumed that the distribution of temperature and density is linear. The effect of optical characteristics through redistribution of hot spot and cold spot density was analyzed. It was also confirmed that the ratio of the density of the redistributed discharge gas has a great influence on the saturation of the optical characteristics. Therefore, it is proved that the design method through the domestic setting is very useful in the actual design, and the method for shortening the time for stabilizing the optical characteristics is obtained.

Study on Vortex Apparatus for Efficiency Improvement of Combustion Chamber of Automobile (자동차 연소실 효율 향상을 위한 와류장치 연구)

  • Choi, Hae-Kyu;Kook, Jeong-Han;Yoo, Joong-Hak;Kim, Sei-Hwan;Kim, Key-Sun;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2945-2950
    • /
    • 2011
  • As the step to improve fuel efficiency, there is the system to build up the eddy of combustion chamber at the suction line in order to increase the combustion efficiency. The models installed with no vortex generation system or with various shapes of the system are examined by fluid analysis. Vortex generation system is installed prior to the suction of combustion chamber. The wing of this system winds itself around the suction air and generates the vortex. This study investigates the flow of suction air and the pressure distribution of suction stroke by using the eddy generation system.

A Study on the Combustion Characteristics of the Small Scale Cyclone Incinerate System for Sludge (슬러지용 소형 사이클론 소각 시스템의 연소특성에 대한 연구)

  • Park, Woo-Cheul;Lee, Hyun-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • The performance of the small scale cyclone incinerate system (100kg/hr) to process the sewage sludge containing high moisture is evaluated. The incinerate system design is based on properties of the domestic sewage sludge. The combustion characteristics of the incinerate system is tested and analyzed with the various operation conditions of the moisture level, the sludge feed rate and the auxiliary fuel feed rate. The pressure loss of the whole system is appeared relatively small of 700mmAq under the normal operating condition and the temperature distribution of the incinerator internal combustion is maintained less than 1000C. Auxiliary fuel of 4.7 1/hr is required to incinerate 100kg sludge which include 87% moisture. Because the inside temperature of the incinerator is maintained less than $1000^{\circ}C$, it is predicted that the most NOx measured is produced not from the heat during the combustion process but from the oxidation of the N ingredient in the sludge. From the component analysis of ash, the organic matter is not entirely detected. Accordingly, it is estimated that the complete combustion has been accomplished in the incinerator.

  • PDF

Performance Analysis of The KALIMER Breakeven Core Driver Fuel Pin Based on Conceptual Design Parameters

  • Lee Dong Uk;Lee Byoung Oon;Kim Young Gyun;Lee Ki Bog;Jang Jin Wook
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.356-368
    • /
    • 2003
  • Material properties such as coolant specific heat, film heat transfer coefficient, cladding thermal conductivity, surface diffusion coefficient of the multi-bubble are improved in MACSIS-Mod1. The axial power and flux profile module was also incorporated with irradiation history. The performance and feasibility of the updated driver fuel pin have been analyzed for nominal parameters based on the conceptual design for the KALIMER breakeven core by MACSIS-MOD1 code. The fuel slug centerline temperature takes the maximum at 700mm from the bottom of the slug in spite of the nearly symmetric axial power distribution. The cladding mid-wall and coolant temperatures take the maximum at the top of the pin. Temperature of the fuel slug surface over the entire irradiation life is much lower than the fuel-clad eutectic reaction temperature. The fission gas release of the driver fuel pin at the end of life is predicted to be $68.61\%$ and plenum pressure is too low to cause cladding yielding. The probability that the fuel pin would fail is estimated to be much less than that allowed in the design criteria. The maximum radial deformation of the fuel pin is $1.93\%$, satisfying the preliminary design criterion ($3\%$) for fuel pin deformation. Therefore the conceptual design parameters of the driver fuel pin for the KALIMER breakeven core are expected to satisfy the preliminary criteria on temperature, fluence limit, deformation limit etc.

Investigation of Characteristics of Passive Heat Removal System Based on the Assembled Heat Transfer Tube

  • Wu, Xiangcheng;Yan, Changqi;Meng, Zhaoming;Chen, Kailun;Song, Shaochuang;Yang, Zonghao;Yu, Jie
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1321-1329
    • /
    • 2016
  • To get an insight into the operating characteristics of the passive residual heat removal system of molten salt reactors, a two-phase natural circulation test facility was constructed. The system consists of a boiling loop absorbing the heat from the drain tank, a condensing loop consuming the heat, and a steam drum. A steady-state experiment was carried out, in which the thimble temperature ranged from $450^{\circ}C$ to $700^{\circ}C$ and the system pressure was controlled at levels below 150 kPa. When reaching a steady state, the system was operated under saturated conditions. Some important parameters, including heat power, system resistance, and water level in the steam drum and water tank were investigated. The experimental results showed that the natural circulation system is feasible in removing the decay heat, even though some fluctuations may occur in the operation. The uneven temperature distribution in the water tank may be inevitable because convection occurs on the outside of the condensing tube besides boiling with decreasing the decay power. The instabilities in the natural circulation loop are sensitive to heat flux and system resistance rather than the water level in the steam drum and water tank. RELAP5 code shows reasonable results compared with experimental data.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

IR Camera Technique Application for Evaluation of Gas Turbine Blades Covering Integrity (가스터빈의 코팅층 건정성 평가를 위한 적외선 열화상 카메라 기법 활용)

  • Kim J.Y.;Yang D.J.;Choi C.J.;Park S.G.;Ahn Y.S.;Jeong G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.192-196
    • /
    • 2005
  • Key part of main equipment in a gas turbine may be likely to be damaged due to operation under high temperature, high pressure, high-speed rotation, etc. Accordingly, the cost for maintenance increases and the damaged parts may cause generation to stop. The number of parts for maintenance also increases, but diagnostics technology fur the maintenance actually does not catch up with the demand. Blades are made of precipitation hardening Ni superalloy IN738 and the like for keeping hot strength. The surface of a blade is thermal-sprayed, using powder with main compositions such as Ni, Cr, Al, etc. in order to inhibit hot oxidation. Conventional regular maintenance of the coating layer of a blade is made by FPI (Fluorescent Penetrant Inspection) and MTP (Magnetic Particle Testing). Such methods, however, are complicated and take long time and also require much cost. In this study, defect diagnostics were tested for the coating layer of an industrial gas turbine blade, using an infraredthermography camera. Since the infrared thermography method can check a temperature distribution on a wide range of area by means of non-contact, it can advantageously save expenses and time as compared to conventional test methods. For the infrared thermography method, however, thermo-load must be applied onto a tested specimen and it is difficult to quantify the measured data. To solve the problems, this essay includes description about producing a specimen of a gas turbine blade (bucket), applying thermo-load onto the produced specimen, photographing thermography images by an infrared thermography camera, analyzing the thermography images, and pre-testing for analyzing defects on the coating layer of the gas turbine blade.

  • PDF

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

Sound Visualization in Time Domain by Using Spatial Envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example. when we need to know only the locations and overall propagation pattern of sound sources. a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope. not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.