DOI QR코드

DOI QR Code

Optical Characteristic Analysis of Electrodeless Lamp due to the Density Difference of Mercury

수은의 밀도차에 의한 무전극 램프의 광특성 분석

  • Lee, Kye-Seung (Department of Electronic Engineering, Catholic Kwandong University) ;
  • Lee, Jae-Min (Department of Electronic Engineering, Catholic Kwandong University)
  • Received : 2017.10.14
  • Accepted : 2017.11.02
  • Published : 2017.12.30

Abstract

For the analysis of the optical characteristics of electrodeless lamps, all the lamp surface temperatures have been treated the same. However, the interpretation of optical properties in this way has not been sufficient in terms of accuracy. In this paper, to overcome this problem, we divided the inside of the bulb into two parts, hot spot and cold spot, and analyzed the density difference of mercury by different temperatures. Here, it is assumed that the distribution of temperature and density is linear. The effect of optical characteristics through redistribution of hot spot and cold spot density was analyzed. It was also confirmed that the ratio of the density of the redistributed discharge gas has a great influence on the saturation of the optical characteristics. Therefore, it is proved that the design method through the domestic setting is very useful in the actual design, and the method for shortening the time for stabilizing the optical characteristics is obtained.

무전극 램프의 광학적 특성 분석을 위한 연구에서는 램프 표면의 온도를 모두 동일하게 취급해 왔었다. 그러나 이러한 방법에 의해 광학적 특성을 해석하는 것은 정확도를 고려할 때 충분하지 않은 문제점을 가지고 있었다. 본 논문에서는 이러한 문제를 극복하고자 벌브 내부를 열점과 냉점의 두 부분으로 나누어 서로 다른 온도에 의한 수은의 밀도차이를 분석하였다. 여기서는 온도와 밀도의 분포가 선형적임을 가정하였다. 열점과 냉점의 밀도의 재분배를 통한 광 특성의 영향을 분석하였다. 또한, 재분배된 방전기체 간의 밀도의 비가 광 특성의 포화에 지대한 영향을 미치고 있음도 확인하였다. 따라서 가정을 통한 설계 방법이 실제의 설계에서 매우 유용함을 입증하였으며, 또한 광 특성이 안정되는 시간을 단축하는 방법에 대한 성과도 확보하였다. 이러한 결과를 토대로 원통형 무전극 방전램프의 효율적인 설계의 한 방안을 제시하였다.

Keywords

References

  1. Y. I. Chung, D. C. Jung, Y. K. Kim, D. H. Park, Study of the Characteristic and Optimi-zation of Induction Lamp according to Gas Pressure and Amalgam Type, JKIIECT, Vol. 10, No. 1, Feb., 2017.
  2. Nippon Denki Academy, Hoden Handbook, pp. 165, Nippon Denki Academy, 1973.
  3. S. W. Rhee, Characteristics of mercurycon-centration in fictitious fire due to fracture of compact fluorescent lamp, Korean Chem. Eng. Res., Vol. 52, No. 5, pp. 652-656, 2014. https://doi.org/10.9713/kcer.2014.52.5.652
  4. P. Hickson, R. Cabanac, S. E .M. Watson, A Study of Mercury Vapour Concentrations at the UBC/Laval 2.7-metre Liquid Mirror Obser vatory, Department of Geophyics and Astro- nomy University of British Columbia, Canada, 13 November, 1993.
  5. L. F. Kozin, S. Hansen, Mercury Handbook, pp. 10-1
  6. M. L. Huber, A. Laesecke, D. G. Friend, Correlation for the Vapor Pressure of Mercury, American Chemical Society, 2006.
  7. M. J. Lee, E. J. Chung, Experimental Analy- sis on the 0 Dimensional Plasma Model in an Inductively Coupled Plasma (ICP), New Physics: Sae Mulli vol. 66, pp. 1183-1180, 2016. https://doi.org/10.3938/NPSM.66.1183
  8. J. H. Bong, Y. J. Kim, H. C. Hwang, D. J. Jin, J. M. Jeong, J. H. Kim, J. H. Koo, G. S. Cho, Mercury Quantity in a Fluorescent Lamp for a Backlight of LCD-TVs, Applied Science and Convergence Technology, Vol. 17, No. 6, pp. 495-500., 2008.
  9. S. C. Ha, Y. H. Paek, A Study on the Characteristics Transport and electron energy distribution function in Hg-Ar, Ministry of Education, 1993.
  10. M. S. Ryou, J. W. Yi, C. K. Chee, The analy-sis of electron energy distribution function using the approximated collision cross section in the low- pressure mercury disch-arge, The Proceedings fo The Korean Institute of Illuminating and Electrical Installa- tion Engineers, Vol. 3, No. 4, December 1989.
  11. H. Kakehashi, A. Sato, T. Yanai, H. Fukun-aga, T. Uetsuki, Analyzing Density in an Induction-coil-type Electrodeless Lamp, J. Illum. Engng. Inst. Jpn., Vol. 93, No. 11, 2009.
  12. T. Uetsuki, M. Ueda, S. Nimata, M. Saimi, H. Kakehashi, Effect of Operating Frequen-cy on Plasma Characteristics of Inductively Coupled Electrodeless Lamp, J. Light & Vis. Env., Vol. 34, No. 1, 2010.
  13. Yinchang Du and Yangfang Li, Plasma Density Distribution in Asymmetric Geometry Capacitive Coupled Plasma Discharge System, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering Vol:6, No:11, 2012.
  14. H. Sugai, K. Ohe, Plasma Electronics, Ohmsha, Ltd., pp. 149-152, 2000.
  15. H. Kakehashi, S. Yamamoto, T. Ninomia, Analyzing Charge-pump Inverter Circuit for Induction-coil Type Electrodeless Lamp, J. Illum. Engng. Inst. Jpn., Vol. 93, No. 2, 2009.
  16. J. Crank, The Mathematics of Diffusion, pp. 1-16, Oxford University Press, 1975.
  17. NIST, Handbook of Basic Atomic Spectro-scopic Data, NIST, https://physics.nist.gov/PhysRefDat a/Handbook/Tables/mercurytable2_a.htm
  18. H. Kumagai, G. Tominaga, Y. Tuzi, G. Horikshi, Vacuum Science and Engineering, pp. 103-110, 376-380, Syokabo Tokyo, 1970.