• 제목/요약/키워드: Pressure Balance

검색결과 849건 처리시간 0.029초

Numerical Study of AGN Jet Propagation with Two Dimensional Relativistic Hydrodynamic Code

  • MIZUTA AKIRA;YAMADA SHOICHI;TAKABE HIDEAKI
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.329-331
    • /
    • 2001
  • We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc $\~$ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued that some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.

  • PDF

Verification of drag-reduction capabilities of stiff compliant coatings in air flow at moderate speeds

  • Boiko, Andrey V.;Kulik, Victor M.;Chun, Ho-Hwan;Lee, In-Won
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.242-253
    • /
    • 2011
  • Skin frictional drag reduction efficiency of "stiff" compliant coating was investigated in a wind tunnel experiment. Flat plate compliant coating inserts were installed in a wind tunnel and the measurements of skin frictional drag and velocity field were carried out. The compliant coatings with varying viscoelastic properties had been prepared using different composition. In order to optimize the coating thickness, the most important design parameter, the dynamic viscoelastic properties had been determined experimentally. The aging of the materials (variation of their properties) during half a year was documented as well. A design procedure proposed by Kulik et al. (2008) was applied to get an optimal value for the coating thickness. Along with the drag measurement using the strain balance, velocity and pressure were measured for different coatings. The compliant coatings with the thickness h = 7mm achieved 4~5% drag reduction within a velocity range 30~40 m/s. The drag reduction mechanism of the attenuation of turbulence velocity fluctuations due to the compliant coating was demonstrated. It is envisioned that larger drag reduction effect is obtainable at higher flow velocities for high speed trains and subsonic aircrafts.

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

NUMERICAL SIMULATION OF SCOUR BY A WALL JET

  • A.A.Salehi Neyshabouri;R.Barron;A.M.Ferreira da Silva
    • Water Engineering Research
    • /
    • 제2권3호
    • /
    • pp.179-185
    • /
    • 2001
  • The time consuming and expensive nature of experimental research on scouring processes caused by flowing water makes it attractive to develop numerical tools for the predication of the interaction of the fluid flow and the movable bed. In this paper the numerical simulation of scour by a wall jet is presented. The flow is assumed to be two-dimensional, and the alluvium is cohesionless. The solution process, repeated at each time step, involves simulation of a turbulent wall jet flow, solution of the convection-diffusion of sand concentration, and prediction of the bed deformation. For simulation of the jet flow, the governing equations for momentum, mass balance and turbulent parameters are solved by the finite volume method. The SIMPLE scheme with momentum interpolation is used for pressure correction. The convection-diffusion equation is solved for sediment concentration. A boundary condition for concentration at the bed, which takes into account the effect of bed-load, is implemented. The time rate of deposition and scour at the bed is obtained by solving the continuity equation for sediment. The shape and position of the scour hole and deposition of the bed material downstream of the hole appear realistic.

  • PDF

하지에 인가한 전기 자극이 자세안정성에 미치는 영향 (Effects of Postural Stability using Electrical Stimulation on the Lower Limb)

  • 이선연;유미;김동욱;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.255-262
    • /
    • 2009
  • The present study analyzed the association between postural control and electrical stimulation by measuring body sway when use the electrical stimulations were applied to different stimulation zones in lower limbs. The subjects were 14 young adults and were, tested for two different visual condition: eyes open and eyes closed. The experiments were also performed in two different stance case: one legged stance and two legged stance while electrical stimulations were applied concurrently or individually to tibialis anterior and triceps surae. Postural responses were assessed by analyzing COP sway path, sum of COP sway measured by a forceplate. The results showed that the direction of the COP shift changed in accordance with the direction of stimulation and showed sensory adaptation as the experiment progressed for two legged stance case. For one legged stance case, concurrent electrical stimulation both sides of muscles was found to be effective for enhancement of postural balance control.

영유아 자녀를 둔 전업주부의 사회활동 참여 - 취업주부와 전업주부 남편과의 비교를 중심으로 - (Participation in social activities by full-time housewives with infants and preschool children: Comparison with working wives and full-time housewives' husbands)

  • 기은광
    • 가족자원경영과 정책
    • /
    • 제20권3호
    • /
    • pp.45-65
    • /
    • 2016
  • The purpose of this study is to investigate the participation in social activities by full-time housewives with infants and preschool children. The data in this study comes from a 1 percent free sample of the 2010 Population and Housing Census collected by Statistics Korea. The statistical methods for this study were percentage, chi-square test, and logistic regression analysis. The findings are as follows. First, there are differences in participation in social activities according to number of infants, number of preschool children, and number of elementary schoolchildren. Second, there was the difference in participation in social activities between full-time housewives and full-time wives' husbands. Third, factors like full-time housewives' age, educational level, number of preschool children and elementary schoolchildren, number of rooms, and occupancy status affected participation in social activities by full-time housewives. These results show that full-time housewives were under pressure in relation to participation in social activities because of their caregiving labor but participated in religious and educational activities actively.

SEMI-SHIELD 공법의 설계 및 시공상 문제점 (Design and Construction Problems of Semi-Shield Method)

  • 김종인;정성남;박영건
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1275-1282
    • /
    • 2009
  • The tunnel excavations are used for construction of common utility tunnel, electric tunnel, communication line tunnel, water supply and public sewerage pile line in urban area. The trench cut methods were mainly used in the past, but now, tunneling method is more being used. The tunnel excavation method like as NATM, Messer-Shield, Semi-Shield Methods are being applied to small section tunnel in Korea. The actual construction results of seme-shield method are increasing due to simplified construction process and reduced noise and vibration. And also this method is being used frequently in waterway tunnel and construction of prevention flooding recently. The seme-shield method design guideline is absence except for electric line tunnel construction in Korea, because of the semi-shield method was developed in Europe and Japan. In the prescriptive design, engineer's subjects are tending to intervene, because of absence of standard and specification for details. Therefore, Design and Construction Problems of Semi-Shield Method were described and construction trouble was introduced for exam. These problem and construction troubles have to be examined thoroughly in advance.

  • PDF

수소연료전지자동차 연료소비율 평가기술 개발에 관한 연구 (Development on Fuel Economy Test Method for Hydrogen Fuel Cell Vehicles)

  • 임종순;이현우;홍윤석;이광범;용기중;권해붕
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.207-213
    • /
    • 2010
  • Fuel consumption measurement of hydrogen fuel cell vehicle is considerably different from internal combustion engine vehicle such as carbon balance method. A practical method of fuel consumption measurement has been developed for hydrogen fuel cell vehicles. There are three method of hydrogen fuel consumption testing, gravimetric, PVT (pressure, volume and temperature), and mass flow, all of which necessitate physical measurements of the fuel supply. The purpose of this research is to measure the fuel consumption of hydrogen fuel cell vehicles on chassis-dynamometer and to give information when the research is intended to develop test method to measure hydrogen fuel economy.