• 제목/요약/키워드: Press Machine

검색결과 625건 처리시간 0.03초

A review of ground camera-based computer vision techniques for flood management

  • Sanghoon Jun;Hyewoon Jang;Seungjun Kim;Jong-Sub Lee;Donghwi Jung
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.425-443
    • /
    • 2024
  • Floods are among the most common natural hazards in urban areas. To mitigate the problems caused by flooding, unstructured data such as images and videos collected from closed circuit televisions (CCTVs) or unmanned aerial vehicles (UAVs) have been examined for flood management (FM). Many computer vision (CV) techniques have been widely adopted to analyze imagery data. Although some papers have reviewed recent CV approaches that utilize UAV images or remote sensing data, less effort has been devoted to studies that have focused on CCTV data. In addition, few studies have distinguished between the main research objectives of CV techniques (e.g., flood depth and flooded area) for a comprehensive understanding of the current status and trends of CV applications for each FM research topic. Thus, this paper provides a comprehensive review of the literature that proposes CV techniques for aspects of FM using ground camera (e.g., CCTV) data. Research topics are classified into four categories: flood depth, flood detection, flooded area, and surface water velocity. These application areas are subdivided into three types: urban, river and stream, and experimental. The adopted CV techniques are summarized for each research topic and application area. The primary goal of this review is to provide guidance for researchers who plan to design a CV model for specific purposes such as flood-depth estimation. Researchers should be able to draw on this review to construct an appropriate CV model for any FM purpose.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.

착색지르코니아 코어와 전장 도재 사이의 전단결합강도에 관한 연구 (A study on the shear bond strengths of veneering ceramics to the colored zirconia core)

  • 강선녀;조욱;전영찬;정창모;윤미정
    • 대한치과보철학회지
    • /
    • 제47권3호
    • /
    • pp.312-319
    • /
    • 2009
  • 연구목적: 지르코니아-도재 수복물에 있어 상부도재와 코어 사이의 결합 실패가 종종 보고되어 왔으며 특히 착색지르코니아 코어는 기존의 백색 지르코니아보다 상부 도재와의 결합력이 약하다고 보고된 바 있다. 이 연구의 목적은 착색 지르코니아 코어 위의 상부도재를 적층식과 열가압식으로 제작하여 그 전단결합강도를 알아보고, 이를 전통적인 금속-도재간 결합강도와 비교하여 그 임상적 안정성을 평가하는 것이다. 연구 재료 및 방법: 금속도재군 (MC)을 대조군으로 하였다. 전통적인 금속도재군 (MC)과 지르코니아 코어를 사용한 두가지 군 (ZB, ZP)에 대하여 각 시스템별로 10개씩, 총 30개의 시편을 제작했다. CAD/CAM을 이용해 직경 12 mm, 높이 2.8 mm의 원판형 지르코니아 코어 (Katana zirconia)를 제작하고, 그 상부에 직경 2.8 mm, 높이 3 mm의 도재를 축성했다. ZB군은 CZR을 이용하여 적층법으로 상부도재를 제작했으며 ZP군은 NobelRondo Press ingot를 열가압하여 제작했다. Shear bond test machine (R&B Inc. Daejeon, Korea)을 이용하여 분당 0.50 mm의 속도로 파절이 일어날 때까지 전단력을 가하여 최대적용력 (N)을 측정하여 전단결합강도를 계산하고, 일원배치 분산분석을 사용하여 유의수준 5%에서 검정하였다. 파절양상을 알아보기 위하여 전자주사현미경을 통해 파절단면을 관찰했다. 결과: 평균 전단강도 (SD)는 MC 대조군 29.14 (2.26); ZB 29.48 (2.30); ZP 29.51 (2.32) 이었다. 실험군과 대조군 사이에 유의한 차이는 없었다. 모든 실험군에서 접착성 실패와 응집성 실패가 혼재된 양상을 보였으며, 응집성 실패가 우세했다. 결론: 1. 착색지르코니아 코어와 상부도재들 간의 전단결합강도는 금속 도재간 전단결합강도와 유의한 차이가 없었다. 2. 착색지르코니아 코어의 상부도재를 제작하는 방식에 있어 적층법과 열가압법 간의 전단결합강도에 유의한 차이는 없었다 (P > .05). 3. 파절양상은 응집성 파절이 우세한 가운데 접착성 파절과 응집성 파절이 혼재되어 나타났다.

Influence of preparation depths on the fracture load of customized zirconia abutments with titanium insert

  • Joo, Han-Sung;Yang, Hong-So;Park, Sang-Won;Kim, Hyun-Seung;Yun, Kwi-Dug;Ji, Min-Kyung;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권3호
    • /
    • pp.183-190
    • /
    • 2015
  • PURPOSE. This study evaluated the fracture load of customized zirconia abutments with titanium insert according to preparation depths, with or without 5-year artificial aging. MATERIALS AND METHODS. Thirty-six identical lithium disilicate crowns (IPS e.max press) were fabricated to replace a maxillary right central incisor and cemented to the customized zirconia abutment with titanium insert on a $4.5{\times}10$ mm titanium fixture. Abutments were fabricated with 3 preparation depths (0.5 mm, 0.7 mm, and 0.9 mm). Half of the samples were then processed using thermocycling (temperature: $5-55^{\circ}C$, dwelling time: 120s) and chewing simulation (1,200,000 cycles, 49 N load). All specimens were classified into 6 groups depending on the preparation depth and artificial aging (non-artificial aging groups: N5, N7, N9; artificial aging groups: A5, A7, A9). Static load was applied at 135 degrees to the implant axis in a universal testing machine. Statistical analyses of the results were performed using 1-way ANOVA, 2-way ANOVA, independent t-test and multiple linear regression. RESULTS. The fracture loads were $539.28{\pm}63.11$ N (N5), $406.56{\pm}28.94$ N (N7), $366.66{\pm}30.19$ N (N9), $392.61{\pm}50.57$ N (A5), $317.94{\pm}30.05$ N (A7), and $292.74{\pm}37.15$ N (A9). The fracture load of group N5 was significantly higher than those of group N7 and N9 (P<.017). Consequently, the fracture load of group A5 was also significantly higher than those of group A7 and A9 (P<.05). After artificial aging, the fracture load was significantly decreased in all groups with various preparation depths (P<.05). CONCLUSION. The fracture load of a single anterior implant restored with lithium disilicate crown on zirconia abutment with titanium insert differed depending on the preparation depths. After 5-year artificial aging, the fracture loads of all preparation groups decreased significantly.

Response of circular footing on dry dense sand to impact load with different embedment depths

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.323-336
    • /
    • 2018
  • Machine foundations with impact loads are common powerful sources of industrial vibrations. These foundations are generally transferring vertical dynamic loads to the soil and generate ground vibrations which may harmfully affect the surrounding structures or buildings. Dynamic effects range from severe trouble of working conditions for some sensitive instruments or devices to visible structural damage. This work includes an experimental study on the behavior of dry dense sand under the action of a single impulsive load. The objective of this research is to predict the dry sand response under impact loads. Emphasis will be made on attenuation of waves induced by impact loads through the soil. The research also includes studying the effect of footing embedment, and footing area on the soil behavior and its dynamic response. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of different soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depths within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil in addition to soil pressure gauges. It was concluded that increasing the footing embedment depth results in increase in the amplitude of the force-time history by about 10-30% due to increase in the degree of confinement. This is accompanied by a decrease in the displacement response of the soil by about 40-50% due to increase in the overburden pressure when the embedment depth increased which leads to increasing the stiffness of sandy soil. There is also increase in the natural frequency of the soil-foundation system by about 20-45%. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency. Moreover, the soil density increases with depth because of compaction, which makes the soil behave as a solid medium. Increasing the footing embedment depth results in an increase in the damping ratio by about 50-150% due to the increase of soil density as D/B increases, hence the soil tends to behave as a solid medium which activates both viscous and strain damping.

Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns

  • Liu, Chanjuan;Wu, Xinling;Wakil, Karzan;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.743-767
    • /
    • 2020
  • Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.

3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보) (Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2)

  • 김영석;;안대철
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3차원 구조 알루미늄 판재(엠보싱 판재)는 표면적이 증가되어 방열효과가 뛰어나고 가공경화에 의해 굽힘강성 증가효과가 있으므로 자동차 열차단 부품에 널리 사용된다. 그러나 엠보싱 판재는 평판의 판재와 비교하면 기계적 특성이 상이하고 또한 3차원 형상으로 인해 프레스 가공에 있어서 많은 제약이 따른다. 본 연구에서는 프레스 가공공정을 대신하여 최근 신제품의 디자인 검증과 시생산에 널리 채용되고 있는 점진성형공정을 대상으로 엠보싱된 판재의 성형특성을 평가하였다. 본 연구에서 채용한 공구형상을 이용한 사각 원뿔의 점진성형 결과, 엠보싱된 판재의 경우가 평판의 경우보다 더 큰 기울기를 갖는 사각 원뿔을 파단없이 성형할 수 있음을 보였다. 이는 점진성형공정에서 CNC 공구의 이동경로(tool path)하에서 공구가 엠보싱 판재의 산과 골을 눌러 복원시키면서 재료의 소성변형을 증가시키기 때문이다. 또한 공구의 이동경로가 내향 경로보다 외향 경로인 경우가 보다 큰 기울기의 제품을 성형할 수 있지만 스프링 백의 발생으로 제품의 표면품질은 열세에 있음을 보였다.

녹차씨 전처리와 추출 조건에 따른 녹차씨 추출물의 추출 수율 및 항효모 활성 (Extraction Yield and Anti-Yeast Activity of Extract from Green Tea Seeds by Pretreatment and Extraction Conditions)

  • 양은주;선유경;위지향
    • 한국식품영양과학회지
    • /
    • 제45권9호
    • /
    • pp.1351-1357
    • /
    • 2016
  • 항효모 활성이 우수한 녹차씨로부터 천연 보존소재를 개발하기 위하여 추출 원료를 최적화하기 위한 녹차씨의 전처리 방법을 평가하였다. 과피 유무에 따른 녹차씨의 추출 결과 추출물의 항효모 활성은 같았으며, 추출 수율은 과피를 제거한 속씨에서 근소하게 높은 것으로 나타났다. 건조에 따른 녹차씨의 수분 함량은 항효모 활성에는 영향을 주지 않았으나 추출 수율은 7.3% 수분 함량에서 가장 높게 나타났다. 분쇄 공정에 따른 녹차씨 추출물의 항효모 활성은 같았으나, 원료의 입도가 작은 믹서 분쇄 원료에서 추출 수율이 더 높게 나타났다. 녹차씨 오일을 추출한 부산물인 탈지 녹차씨를 추출하여 보존소재 원료로써 활용 가능성을 평가한 결과 항효모 활성은 녹차씨 추출물과 같았으며, 탈지 방법에 따라 수율은 다르게 나타나 헥산 추출 탈지 녹차씨보다 압착 탈지 녹차씨의 추출 수율이 더 높게 나타났다. 녹차씨의 전처리 방법 평가에 따라 천연 보존소재를 추출하기 위한 원료로서 과피가 포함된 녹차씨를 수분 함량 7.3%로 건조한 후 롤밀 분쇄하여 착유기로 오일을 추출한 탈지 녹차씨를 제조하였다. 탈지 녹차씨를 추출 용매에 따라 추출한 후 수율 및 항효모 활성을 조사한 결과 경제성이 높은 추출 용매는 물이 적합하였다. 추출 온도 및 시간에 따른 탈지 녹차씨의 추출결과 $90^{\circ}C$ 추출에서는 항효모 활성이 다소 불안정한 것으로 나타났다. 추출 수율과 항효모 활성의 안정성을 고려하여 물을 용매로 하였을 때 $50^{\circ}C$, 4시간 추출 조건이 적합할 것으로 생각된다.

자가기질혈관분획을 이용한 수지골 결손 환자의 치료 (Treatment of Phalangeal Bone Defect Using Autologous Stromal Vascular Fraction from Lipoaspirated Tissue)

  • 정태원;지이화;김덕우;동은상;윤을식
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.438-444
    • /
    • 2011
  • Purpose: Adipose-derived stromal cells (ASCs) are readily harvested from lipoaspirated tissue or subcutaneous adipose tissue fragments. The stromal vascular fraction (SVF) is a heterogeneous set of cell populations that surround and support adipose tissue, which includes the stromal cells, ASCs, that have the ability to differentiate into cells of several lineages and contains cells from the microvasculature. The mechanisms that drive the ASCs into the osteoblast lineage are still not clear, but the process has been more extensively studied in bone marrow stromal cells. The purpose of this study was to investigate the osteogenic capacity of adipose derived SVF cells and evaluate bone formation following implantation of SVF cells into the bone defect of human phalanx. Methods: Case 1 a 43-year-old male was wounded while using a press machine. After first operation, segmental bone defects of the left 3rd and 4th middle phalanx occurred. At first we injected the SVF cells combined with demineralized bone matrix (DBM) to defected 4th middle phalangeal bone lesion. We used P (L/DL)LA [Poly (70L-lactide-co-30DL-lactide) Co Polymer P (L/DL)LA] as a scaffold. Next, we implanted the SVF cells combined with DBM to repair left 3rd middle phalangeal bone defect in sequence. Case 2 was a 25-year-old man with crushing hand injury. Three months after the previous surgery, we implanted the SVF cells combined with DBM to restore right 3rd middle phalangeal bone defect by syringe injection. Radiographic images were taken at follow-up hospital visits and evaluated radiographically by means of computerized analysis of digital images. Results: The phalangeal bone defect was treated with autologous SVF cells isolated and applied in a single operative procedure in combination with DBM. The SVF cells were supported in place with mechanical fixation with a resorbable macroporous sheets acting as a soft tissue barrier. The radiographic appearance of the defect revealed a restoration to average bone density and stable position of pharyngeal bone. Densitometric evaluations for digital X-ray revealed improved bone densities in two cases with pharyngeal bone defects, that is, 65.2% for 4th finger of the case 1, 60.5% for 3rd finger of the case 1 and 60.1% for the case 2. Conclusion: This study demonstrated that adipose derived stromal vascular fraction cells have osteogenic potential in two clinical case studies. Thus, these reports show that cells from the SVF cells have potential in many areas of clinical cell therapy and regenerative medicine, albeit a lot of work is yet to be done.