DOI QR코드

DOI QR Code

Extraction Yield and Anti-Yeast Activity of Extract from Green Tea Seeds by Pretreatment and Extraction Conditions

녹차씨 전처리와 추출 조건에 따른 녹차씨 추출물의 추출 수율 및 항효모 활성

  • Yang, Eun Ju (Food Research Center, Jeonnam Bioindustry Foundation) ;
  • Seon, Yoo Kyung (Food Research Center, Jeonnam Bioindustry Foundation) ;
  • Wee, Ji-Hyang (Food Research Center, Jeonnam Bioindustry Foundation)
  • 양은주 ((재)전남생물산업진흥원 식품산업연구센터) ;
  • 선유경 ((재)전남생물산업진흥원 식품산업연구센터) ;
  • 위지향 ((재)전남생물산업진흥원 식품산업연구센터)
  • Received : 2016.05.25
  • Accepted : 2016.07.11
  • Published : 2016.09.30

Abstract

Green tea (Camellia sinensis) seed extract (GTSE) was prepared under various pretreatment conditions and used to investigate its extraction yield and anti-yeast activity. Anti-yeast activity of GTSE from seeds with or without the coats was the same, whereas the extraction yield was slightly higher in extract from seeds without the coat. Anti-yeast activity of GTSE from seeds with different water contents or particle sizes was the same, whereas the extraction yield was highest in extract from seeds with 7.3% moisture or a smaller particle size. Anti-yeast activity of defatted green tea seed extract (DGTSE) was the same as that of GTSE. Extraction yield was higher in DGTSE from defatted seeds by the oil press machine compared to hexane extraction. Defatted green tea seed (DGTS), a by-product from the oil extraction process, is a good natural source of anti-yeast preservative. The extraction yield and anti-yeast activity of DGTSE were investigated using various extraction solvents, temperatures, and times. The results show that water was an economic extraction solvent, and anti-yeast activity of DGTSE was unstable at $90^{\circ}C$. These results suggest that water, extraction temperature of $50^{\circ}C$, and extraction time of 4 h were the most efficient for extraction of anti-yeast compounds from DGTS.

항효모 활성이 우수한 녹차씨로부터 천연 보존소재를 개발하기 위하여 추출 원료를 최적화하기 위한 녹차씨의 전처리 방법을 평가하였다. 과피 유무에 따른 녹차씨의 추출 결과 추출물의 항효모 활성은 같았으며, 추출 수율은 과피를 제거한 속씨에서 근소하게 높은 것으로 나타났다. 건조에 따른 녹차씨의 수분 함량은 항효모 활성에는 영향을 주지 않았으나 추출 수율은 7.3% 수분 함량에서 가장 높게 나타났다. 분쇄 공정에 따른 녹차씨 추출물의 항효모 활성은 같았으나, 원료의 입도가 작은 믹서 분쇄 원료에서 추출 수율이 더 높게 나타났다. 녹차씨 오일을 추출한 부산물인 탈지 녹차씨를 추출하여 보존소재 원료로써 활용 가능성을 평가한 결과 항효모 활성은 녹차씨 추출물과 같았으며, 탈지 방법에 따라 수율은 다르게 나타나 헥산 추출 탈지 녹차씨보다 압착 탈지 녹차씨의 추출 수율이 더 높게 나타났다. 녹차씨의 전처리 방법 평가에 따라 천연 보존소재를 추출하기 위한 원료로서 과피가 포함된 녹차씨를 수분 함량 7.3%로 건조한 후 롤밀 분쇄하여 착유기로 오일을 추출한 탈지 녹차씨를 제조하였다. 탈지 녹차씨를 추출 용매에 따라 추출한 후 수율 및 항효모 활성을 조사한 결과 경제성이 높은 추출 용매는 물이 적합하였다. 추출 온도 및 시간에 따른 탈지 녹차씨의 추출결과 $90^{\circ}C$ 추출에서는 항효모 활성이 다소 불안정한 것으로 나타났다. 추출 수율과 항효모 활성의 안정성을 고려하여 물을 용매로 하였을 때 $50^{\circ}C$, 4시간 추출 조건이 적합할 것으로 생각된다.

Keywords

References

  1. Souza EL, Stamford TLM, Lima EO, Trajano VN. 2007. Effectiveness of Origanum vulgare essential oil to inhibit the growth of food spoiling yeasts. Food Control 18: 409-413. https://doi.org/10.1016/j.foodcont.2005.11.008
  2. Kim YS, Kyung KH, Kim YS. 2000. Inhibition of soy sauce film yeasts by allyl isothiocyanate and horse-radish powder. Korean J Food Nutr 13: 263-268.
  3. Deak T, Beuchat LR. 1987. Identification of foodborne yeasts. J Food Prot 50: 243-264. https://doi.org/10.4315/0362-028X-50.3.243
  4. Yeon JH, Lee JY, Lee HS, Ha SD, Park CS, Woo MJ, Lee SH, Kim JS, Lee C. 2009. Evaluation of the natural antimicrobials against yeasts in functional beverages to control quality loss. J Fd Hyg Safety 24: 273-276.
  5. Belletti N, Kamdem SS, Patrignani F, Lanciotti R, Covelli A, Gardini F. 2007. Antimicrobial activity of aroma compounds against Saccharomyces cerevisiae and improvement of microbiological stability of soft drinks as assessed by logistic regression. Appl Environ Microbiol 73: 5580-5586. https://doi.org/10.1128/AEM.00351-07
  6. Stratford M. 2006. Food and beverage spoilage yeasts. In Yeasts in Food and Beverages. Querol A, Fleet GH, eds. Springer-Verlag, Berlin, Germany. p 335-380.
  7. Gould GW. 2001. New processing technologies: an overview. Proc Nutr Soc 60: 463-474. https://doi.org/10.1079/PNS2001105
  8. Seow YX, Yeo CR, Chung HL, Yuk HG. 2014. Plant essential oils as active antimicrobial agents. Crit Rev Food Sci Nutr 54: 625-644. https://doi.org/10.1080/10408398.2011.599504
  9. Juneja VK, Dwivedi HP, Yan X. 2012. Novel natural food antimicrobials. Annu Rev Food Sci Technol 3: 381-403. https://doi.org/10.1146/annurev-food-022811-101241
  10. Nabavi SF, Di Lorenzo A, Izadi M, Sobarzo-Sanchez E, Daglia M, Nabavi SM. 2015. Antibacterial effects of cinnamon: from farm to food, cosmetic and pharmaceutical industries. Nutrients 7: 7729-7748. https://doi.org/10.3390/nu7095359
  11. Cleveland J, Montville TJ, Nes IF, Chikindas ML. 2001. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71: 1-20. https://doi.org/10.1016/S0168-1605(01)00560-8
  12. Kramer B, Thielmann J, Hickisch A, Muranyi P, Wunderlich J, Hauser C. 2015. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J Appl Microbiol 118: 648-657. https://doi.org/10.1111/jam.12717
  13. Kim YS, Kim R, Na MS, Choi DB. 2010. Effect of extraction process on the physicochemical characteristics of seed oil of Camellia sinensis. Appl Chem Eng 21: 148-153.
  14. Tomita M, Yamamoto S, Yamaguchi K, Ohigashi H, Yagi T, Kohata K, Berden JA. 2000. Theasaponin $E_1$destroys the salt tolerance of yeasts. J Biosci Bioeng 90: 637-642. https://doi.org/10.1016/S1389-1723(00)90009-4
  15. Myose M, Warashina T, Miyase T. 2012. Triterpene saponins with hyaluronidase inhibitory activity from the seeds of Camellia sinensis. Chem Pharm Bull 60: 612-623. https://doi.org/10.1248/cpb.60.612
  16. Li N, Ma ZJ, Chu Y, Wang Y, Li X. 2013. Phytochemical analysis of the triterpenoids with cytotoxicity and QR inducing properties from the total tea seed saponin of Camellia sinensis. Fitoterapia 84: 321-325. https://doi.org/10.1016/j.fitote.2012.12.022
  17. Yang WS, Ko J, Kim E, Kim JH, Park JG, Sung NY, Kim HG, Yang S, Rho HS, Hong YD, Shin SS, Cho JY. 2014. 21-O-angeloyltheasapogenol E3, a novel triterpenoid saponin from the seeds of tea plants, inhibits macrophagemediated inflammatory responses in a NF-${\kappa}$B-dependent manner. Mediators Inflamm 2014: 658351.
  18. Morikawa T, Li N, Nagatomo A, Matsuda H, Li X, Yoshikawa M. 2006. Triterpene saponins with gastroprotective effects from tea seed (the seeds of Camellia sinensis). J Nat Prod 69: 185-190. https://doi.org/10.1021/np058097w
  19. Cho YS, Kim HS, Kim SK, Kwon OC, Jeong SJ, Lee YM. 1997. Antibacterial and bactericidal activity of green tea extracts. J Kor Tea Soc 3(2): 89-103.
  20. Shin YH, Lee SC, Choi SG, Heo HJ, Cho SH. 2009. Separation and identification of antimicrobial substances from green tea extracts. Korean J Food Preserv 16: 924-928.
  21. Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. 2012. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem 135: 672-675. https://doi.org/10.1016/j.foodchem.2012.04.143
  22. Yoon WH, Choi JH, Lee KH, Kim CH. 2005. Antimicrobial and antitumor activities of seed extracts of Camellia sinensis L.. Korean J Food Sci Technol 37: 108-112.
  23. Kim JK, Kim SH, Noh KH, Jang JH, Song YS. 2007. Effects of green tea seed oil on the cholesterol, TBARS and inflammatory responses in C57BL/6 mice fed high cholesterol diet. J Korean Soc Food Sci Nutr 36: 284-290. https://doi.org/10.3746/jkfn.2007.36.3.284
  24. Wang Y, Sun D, Chen H, Qian L, Xu P. 2011. Fatty acid composition and antioxidant activity of tea (Camellia sinensis L.) seed oil extracted by optimized supercritical carbon dioxide. Int J Mol Sci 12: 7708-7719. https://doi.org/10.3390/ijms12117708
  25. Min MJ, Choi MH, Kim GC, Shin HJ. 2013. Damage prevention effect of green tea seed oil on colored and decolored hair. KSBB J 28: 287-294. https://doi.org/10.7841/ksbbj.2013.28.5.287
  26. Choi JH, Nam JO, Kim JY, Kim JM, Paik HD, Kim CH. 2006. Antioxidant, antimicrobial, and antitumor activities of partially purified substance(s) from green tea seed. Food Sci Biotechnol 15: 672-676.
  27. Noh KH, Min KH, Seo BY, Kim HO, Kim SH, Song YS. 2011. Suppressive effects of defatted green tea seed ethanol extract on cancer cell proliferation in HepG2 cells. J Korean Soc Food Sci Nutr 40: 767-774. https://doi.org/10.3746/jkfn.2011.40.6.767