• Title/Summary/Keyword: Preprocessed data

Search Result 188, Processing Time 0.023 seconds

Evaluation of Deep Learning Model for Scoliosis Pre-Screening Using Preprocessed Chest X-ray Images

  • Min Gu Jang;Jin Woong Yi;Hyun Ju Lee;Ki Sik Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.293-301
    • /
    • 2023
  • Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.

STATISTICALLY PREPROCESSED DATA BASED PARAMETRIC COST MODEL FOR BUILDING PROJECTS

  • Sae-Hyun Ji;Moonseo Park;Hyun-Soo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.417-424
    • /
    • 2009
  • For a construction project to progress smoothly, effective cost estimation is vital, particularly in the conceptual and schematic design stages. In these early phases, despite the fact that initial estimates are highly sensitive to changes in project scope, owners require accurate forecasts which reflect their supplying information. Thus, cost estimators need effective estimation strategies. Practically, parametric cost estimates are the most commonly used method in these initial phases, which utilizes historical cost data (Karshenas 1984, Kirkham 2007). Hence, compilation of historical data regarding appropriate cost variance governing parameters is a prime requirement. However, precedent practice of data mining (data preprocessing) for denoising internal errors or abnormal values is needed before compilation. As an effort to deal with this issue, this research proposed a statistical methodology for data preprocessing and verified that data preprocessing has a positive impact on the enhancement of estimate accuracy and stability. Moreover, Statistically Preprocessed data Based Parametric (SPBP) cost models are developed based on multiple regression equations and verified their effectiveness compared with conventional cost models.

  • PDF

Number Recognition Using Accelerometer of Smartphone (스마트폰 가속도 센서를 이용한 숫자인식)

  • Bae, Seok-Chan;Kang, Bo-Gyung
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2011
  • In this Paper, we suggest the effective pre-correction algorithm on sensor values and the classification algorithm for gesture recognition that use values for each axis of the accelerometer to send data(a number or specific input data) to device. we know that creation of reliable preprocessed data in experimental results through the error rate of X-Axis and Y-Axis for pre-correction and post-correction. we can show high recognition rate through recognizer using the normalization and classification algorithm for the preprocessed data.

  • PDF

A Preprocessing Algorithm for Efficient Lossless Compression of Gray Scale Images

  • Kim, Sun-Ja;Hwang, Doh-Yeun;Yoo, Gi-Hyoung;You, Kang-Soo;Kwak, Hoon-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2485-2489
    • /
    • 2005
  • This paper introduces a new preprocessing scheme to replace original data of gray scale images with particular ordered data so that performance of lossless compression can be improved more efficiently. As a kind of preprocessing technique to maximize performance of entropy encoder, the proposed method converts the input image data into more compressible form. Before encoding a stream of the input image, the proposed preprocessor counts co-occurrence frequencies for neighboring pixel pairs. Then, it replaces each pair of adjacent gray values with particular ordered numbers based on the investigated co-occurrence frequencies. When compressing ordered image using entropy encoder, we can expect to raise compression rate more highly because of enhanced statistical feature of the input image. In this paper, we show that lossless compression rate increased by up to 37.85% when comparing results from compressing preprocessed and non-preprocessed image data using entropy encoder such as Huffman, Arithmetic encoder.

  • PDF

Clustering Meta Information of K-Pop Girl Groups Using Term Frequency-inverse Document Frequency Vectorization (단어-역문서 빈도 벡터화를 통한 한국 걸그룹의 음반 메타 정보 군집화)

  • JoonSeo Hyeon;JaeHyuk Cho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.12-23
    • /
    • 2023
  • In the 2020s, the K-Pop market has been dominated by girl groups over boy groups and the fourth generation over the third generation. This paper presents methods and results on lyric clustering to investigate whether the generation of girl groups has started to change. We collected meta-information data for 1469 songs of 47 groups released from 2013 to 2022 and classified them into lyric information and non-lyric meta-information and quantified them respectively. The lyrics information was preprocessed by applying word-translation frequency vectorization based on previous studies and then selecting only the top vector values. Non-lyric meta-information was preprocessed and applied with One-Hot Encoding to reduce the bias of using only lyric information and show better clustering results. The clustering performance on the preprocessed data is 129%, 45% higher for Spherical K-Means' Silhouette Score and Calinski-Harabasz Score, respectively, compared to Hierarchical Clustering. This paper is expected to contribute to the study of Korean popular song development and girl group lyrics analysis and clustering.

  • PDF

Implementation of Intelligent Expert System for Color Measuring/Matching (칼라 매저링/매칭용 지능형 전문가 시스템의 구현)

  • An, Tae-Cheon;Jang, Gyeong-Won;O, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.589-598
    • /
    • 2002
  • The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.

Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables (전처리 나물류 및 구근류에서 병원성 미생물의 성장예측모델 개발 및 검증)

  • Enkhjargal, Lkhagvasarnai;Min, Kyung Jin;Yoon, Ki Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.10
    • /
    • pp.1690-1700
    • /
    • 2013
  • The objective of this study is to develop and validate predictive growth models for Bacillus cereus (diarrhea type) vegetative cells, spores and Staphylococcus aureus in preprocessed Namul (bracken and Chwinamul) and root vegetables (bellflower and burdock). For validation of model performance, growth data for S. aureus in preprocessed vegetables were collected at independent temperatures (18 and $30^{\circ}C$) not used in the model development. In addition, model performance of B. cereus (diarrhea type) in preprocessed vegetables was validated with an emetic type of B. cereus strain. In primary models, the specific growth rate (SGR) of the B. cereus spores was faster than that of the B. cereus vegetative cells, regardless of the kinds of vegetables at 24 and $35^{\circ}C$, while lag time (LT) of the B. cereus spores was longer than that of the B. cereus vegetative cells, except for burdock. The growth of B. cereus and S. aureus was not observed in bracken at temperatures lower than 13 and $8^{\circ}C$, respectively. The LT models for B. cereus (diarrhea type) in this study were suitable in predicting the growth of B. cereus (emetic type) on burdock and Chwinamul. On the other hand, SGR models for B. cereus (diarrhea type) were suitable for predicting the growth of B. cereus (emetic type) on all preprocessed vegetables. The developed models can be used to predict the risk of B. cereus and S. aureus in preprocessed Namul and root vegetables at the retail markets.

Automatic Algorithm for Cleaning Asset Data of Overhead Transmission Line (가공송전 전선 자산데이터의 정제 자동화 알고리즘 개발 연구)

  • Mun, Sung-Duk;Kim, Tae-Joon;Kim, Kang-Sik;Hwang, Jae-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.73-77
    • /
    • 2021
  • As the big data analysis technologies has been developed worldwide, the importance of asset management for electric power facilities based data analysis is increasing. It is essential to secure quality of data that will determine the performance of the RISK evaluation algorithm for asset management. To improve reliability of asset management, asset data must be preprocessed. In particular, the process of cleaning dirty data is required, and it is also urgent to develop an algorithm to reduce time and improve accuracy for data treatment. In this paper, the result of the development of an automatic cleaning algorithm specialized in overhead transmission asset data is presented. A data cleaning algorithm was developed to enable data clean by analyzing quality and overall pattern of raw data.

A Topic Modeling Analysis for Online News Article Comments on Nurses' Workplace Bullying (간호사의 직장 내 괴롭힘 관련 온라인 뉴스기사 댓글에 대한 토픽 모델링 분석)

  • Kang, Jiyeon;Kim, Soogyeong;Roh, Seungkook
    • Journal of Korean Academy of Nursing
    • /
    • v.49 no.6
    • /
    • pp.736-747
    • /
    • 2019
  • Purpose: This study aimed to explore public opinion on workplace bullying in the nursing field, by analyzing the keywords and topics of online news comments. Methods: This was a text-mining study that collected, processed, and analyzed text data. A total of 89,951 comments on 650 online news articles, reported between January 1, 2013 and July 31, 2018, were collected via web crawling. The collected unstructured text data were preprocessed and keyword analysis and topic modeling were performed using R programming. Results: The 10 most important keywords were "work" (37121.7), "hospital" (25286.0), "patients" (24600.8), "woman" (24015.6), "physician" (20840.6), "trouble" (18539.4), "time" (17896.3), "money" (16379.9), "new nurses" (14056.8), and "salary" (13084.1). The 22,572 preprocessed key words were categorized into four topics: "poor working environment", "culture among women", "unfair oppression", and "society-level solutions". Conclusion: Public interest in workplace bullying among nurses has continued to increase. The public agreed that negative work environment and nursing shortage could cause workplace bullying. They also considered nurse bullying as a problem that should be resolved at a societal level. It is necessary to conduct further research through gender discrimination perspectives on nurse workplace bullying and the social value of nursing work.

Image Processing in Digital 'Takbon' and the Decipherment of Epigraphic Letters (영상신호처리에 의한 디지털 탁본화 문자 판독)

  • 황재호
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.27-30
    • /
    • 2003
  • In this paper a new approach of digitalized ‘Takbon’ is introduced. By image signal processing, the letters which were written on stones can be deciphered. Epigraphic letter is detected by digital image device, digital camera. The two dimensional digital image is preprocessed because of sensor noise and detective turbulence. Color image is transformed into grey level. The letter image is analyzed in time/frequency domain. By the resultant analysis data decisive functions are calculated. Signal Processing techniques, such as scaling, clipping, digital negative, high/low filter, morphology and so on, provide algorithms that can extract letter from stones.

  • PDF