DOI QR코드

DOI QR Code

Development and Validation of Predictive Model for Foodborne Pathogens in Preprocessed Namuls and Wild Root Vegetables

전처리 나물류 및 구근류에서 병원성 미생물의 성장예측모델 개발 및 검증

  • Enkhjargal, Lkhagvasarnai (Dept. of Food and Nutrition, College of Human Ecology, Kyung-Hee University) ;
  • Min, Kyung Jin (Dept. of Food and Nutrition, Jangan University) ;
  • Yoon, Ki Sun (Dept. of Food and Nutrition, College of Human Ecology, Kyung-Hee University)
  • Received : 2013.06.14
  • Accepted : 2013.09.26
  • Published : 2013.10.31

Abstract

The objective of this study is to develop and validate predictive growth models for Bacillus cereus (diarrhea type) vegetative cells, spores and Staphylococcus aureus in preprocessed Namul (bracken and Chwinamul) and root vegetables (bellflower and burdock). For validation of model performance, growth data for S. aureus in preprocessed vegetables were collected at independent temperatures (18 and $30^{\circ}C$) not used in the model development. In addition, model performance of B. cereus (diarrhea type) in preprocessed vegetables was validated with an emetic type of B. cereus strain. In primary models, the specific growth rate (SGR) of the B. cereus spores was faster than that of the B. cereus vegetative cells, regardless of the kinds of vegetables at 24 and $35^{\circ}C$, while lag time (LT) of the B. cereus spores was longer than that of the B. cereus vegetative cells, except for burdock. The growth of B. cereus and S. aureus was not observed in bracken at temperatures lower than 13 and $8^{\circ}C$, respectively. The LT models for B. cereus (diarrhea type) in this study were suitable in predicting the growth of B. cereus (emetic type) on burdock and Chwinamul. On the other hand, SGR models for B. cereus (diarrhea type) were suitable for predicting the growth of B. cereus (emetic type) on all preprocessed vegetables. The developed models can be used to predict the risk of B. cereus and S. aureus in preprocessed Namul and root vegetables at the retail markets.

본 연구에서 사용한 전처리 나물류 중 고사리 경우 $13^{\circ}C$에서 B. cereus 영양세포 및 포자가, $8^{\circ}C$에서 S. aureus는 성장하지 않았다. 전처리 나물류 및 구근류에서 B. cereus 영양세포 및 포자의 성장특성을 비교한 결과, 도라지와 취나물에서 LT, SGR 및 MPD는 B. cereus 영양세포와 포자사이에 유의적인 차이를 보이지 않았다. 반면 우엉은 $13^{\circ}C$에 저장한 경우 B. cereus 영양세포와 포자의 유도기는 유의적인 차이를 보였으며 고사리의 경우, 17, 24, $35^{\circ}C$ 온도에서 B. cereus 포자의 유도기는 영양세포의 유도기 값보다 2배 연장된 것으로 유의적인 차이를 나타내었다(P<0.05). $24^{\circ}C$$35^{\circ}C$의 상온에서는 모든 나물류 및 구근류에서 B. cereus 포자 유도기는 영양세포의 유도기보다 연장되었고, SGR 값은 포자가 빠른 것으로 나타났다. 한편, $13^{\circ}C$$17^{\circ}C$에서는 B. cereus 영양세포와 포자의 유도기가 고온에 비하여 연장되어 B. cereus 영양세포와 포자의 성장을 억제하기 위해서는 $13^{\circ}C$ 이하의 온도 관리가 중요하다. 또한 B. cereus와 S. aureus 영양세포의 성장특성 비교 결과, $13^{\circ}C$ 이하에서는 B. cereus 성장이 관찰되지 않았으나 S. aureus는 $8^{\circ}C$에서도 성장하였다. 전반적으로 $13^{\circ}C$에서 모든 나물류 및 구근류는 B. cereus의 유도기가 S. aureus 의 유도기보다 3배 이상 연장되었다. 전처리 나물류 및 구근류에서 개발된 설사형 B. cereus 영양세포 및 포자 성장예측모델을 구토형 B. cereus 영양세포 및 포자의 실험값으로 검증한 결과, 도라지와 고사리의 LT 모델과 고사리의 SGR 모델을 제외한 모든 모델에서 Bf 값이 허용범위(0.07~1.15)에 속하여 설사형 B. cereus 영양세포, 포자 성장모델이 구토형 B. cereus 영양세포, 포자의 성장을 예측하는데 적합한 것으로 나타났다. 또한 전처리 나물류 및 구근류에서 $8{\sim}35^{\circ}C$ 사이에 개발된 S. aureus의 성장예측 모델을 실험에 사용하지 않은 온도(18, $30^{\circ}C$)로 적합성을 검증한 결과, 도라지의 SGR 모델을 제외한 모든 모델에서 Bf와 Af 값이 가장 이상적인 1에 가까운 값으로 나타나 실험값과 예측값 사이의 일치성을 보였다. 본 연구 결과 개발된 전처리 나물류 및 구근류의 성장예측 모델은 병원성 미생물의 증식을 억제하는 기준과 규격 설정 시 활용 가능할 것이며, 전처리 나물류의 HACCP 공정의 CCP(critical control point) 및 CL(critical limit)을 설정하는데 유용한 자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Lee MJ. 2008. A feasibility study of using preprocessed and fresh-cut vegetables for school food services in Gyeong- Gi province. PhD Dissertation. Dankook University, Yongin, Korea. p 1-3.
  2. Kwak SJ, Kim SJ, Lkhagvasarnai E, Yoon KS. 2012. Analysis of microbiological hazards of preprocessed Namuls in school food service and processing plant. J Fd Hyg Safety 27: 117-126. https://doi.org/10.13103/JFHS.2012.27.2.117
  3. Jo SH, Chung HJ, Lee SH, Hwang SJ, Om AS, Eun JB. 2013. Microbial quality of fresh vegetables in restaurants around school. Korean J Food Preserv 20: 424-428. https://doi.org/10.11002/kjfp.2013.20.3.424
  4. Beuchat LR. 1996. Pathogenic microorganisms associated with fresh produce. J Food Prot 59: 204-216. https://doi.org/10.4315/0362-028X-59.2.204
  5. Gleeson E, O'Beirne D. 2005. Effects of process severity on survival and growth of Escherichia coli and Listeria innocua on minimally processed vegetables. Food Control 16: 677-685. https://doi.org/10.1016/j.foodcont.2004.06.004
  6. Kim JS, Bang OK, Chang HC. 2004. Examination of microbiological contamination of ready-to-eat vegetable salad. J Fd Hyg Safety 19: 60-65.
  7. Korean Food and Drug Administration. 2012. Foodborne Illness Statistics. Available from: http://www.mfds.go.kr/ e-stat/index.do. Assessed Aug 12, 2013.
  8. Whiting RC. 1995. Microbial modeling in foods. Crit Rev Food Sci Nutr 35: 467-494. https://doi.org/10.1080/10408399509527711
  9. Petchsing U, Woodburn MJ. 1990. Staphylococcus aureus and Escherichia coli in nham (Thai-style fermented pork sausage). Int J Food Microbiol 10: 183-192. https://doi.org/10.1016/0168-1605(90)90065-D
  10. Whiting RC, Buchanan RL. 1997. Development of a quantitative risk assessment model for Salmonella enteritidis in pasteurized liquid eggs. Int J Food Microbiol 36: 111-125. https://doi.org/10.1016/S0168-1605(97)01262-2
  11. Dalgaard P, Jorgensen LV. 1998. Predicted and observed growth of Listeria monocytogenes in seafood challenge tests and in naturally contaminated cold-smoked salmon. Int J Food Microbiol 40: 105-115. https://doi.org/10.1016/S0168-1605(98)00019-1
  12. Jin SS. 2005. Development of model for predicitve growth of Bacillus cereus and Staphylococcus aureus in Kimbab. MS Thesis. Kangwon National University, Chuncheon, Korea. p 3-5.
  13. Park YB. 2005. Characterization of Bacillus cereus isolated from grains and development of predictive growth model and inactivation techniques. PhD Dissertaton. Kangwon National University, Chuncheon, Korea.
  14. Cho YS, Jung EY, Lee MK, Yang CY, Shin DB. 2008. Survival, isolation and characterization of Bacillus cereus from Sunshik. J Fd Hyg Safety 23: 343-347.
  15. Chang HJ, Lee JH. 2009. Prevalence of Bacillus cereus from fried rice dishes and monitoring guidelines for risk management. Korean J Food Cookery Sci 25: 45-54.
  16. Kang KA, Kim YW, Yoon KS. 2010. Development of predictive growth models for Staphylococcus aureus and Bacillus cereus on various food matrices consisting of ready-toeat (RTE) foods. Korean J Food Sci Ani Resour 30: 730-738. https://doi.org/10.5851/kosfa.2010.30.5.730
  17. Park HS, Bahk GJ, Park KH, Pak JY, Ryu K. 2010. Predictive model for growth of Staphylococcus aureus in Suyuk. Korean J Food Sci Ani Resour 30: 487-494. https://doi.org/10.5851/kosfa.2010.30.3.487
  18. Bae YM, Kim BR, Lee SY, Cha MH, Park KH, Chung MS, Ryu K. 2012. Growth and predictive model of Bacillus cereus on blanched spinach with or without seasoning at various temperatures. Food Sci Biotechnol 21: 503-508. https://doi.org/10.1007/s10068-012-0064-7
  19. Jo HJ, Hong SH, Kim YG, Shin DB, Oh MH, Hwang JH, Lkhagvasarnai E, Yoon KS. 2012. Validation of broth model for growth of Bacillus cereus in blanched vegetables. J East Asian Soc Dietary Life 22: 558-565.
  20. Park HS, Kim MY, Jeong HS, Park KH, Ryu K. 2009. Development of a predictive growth model of Staphylococcus aureus and shelf-life estimation of cooked mung bean sprouts served in school foodservice operations. J Korean Soc Food Sci Nutr 38: 1618-1624. https://doi.org/10.3746/jkfn.2009.38.11.1618
  21. Mazas M, Gonzalez I, Lopez M, Gonzalez J, Sarmiento RM. 1995. Effects of sporulation media and strain on thermal resistance of Bacillus cereus spores. Int J Food Sci Technol 30: 71-78.
  22. Gibson AM, Bratchell N, Roberts TA. 1987. The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol 62: 479-490. https://doi.org/10.1111/j.1365-2672.1987.tb02680.x
  23. Davey KR. 1989. A predictive model for combined temperature and water activity on microbial growth during the growth phase. J Appl Bacteriol 67: 483-488. https://doi.org/10.1111/j.1365-2672.1989.tb02519.x
  24. Ratkowsky DA, Olley J, McMeekin TA, Ball A. 1982. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149: 1-5.
  25. McMeekin TA, Olley J, Ross T, Ratkowsky, DA. 1993. Predictive Microbiology: Theory and Application. John Wiley & Sons Ltd., Hoboken, NJ, USA. p 87-113.
  26. Ross T. 1996. Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol 81: 501-508.
  27. Abou-Zeid KA, Oscar TP, Schwarz JG, Hashem FM, Whiting RC, Yoon K. 2009. Development and validation of a predictive model for Listeria monocytogenes Scott A as a function of temperature, pH, and commercial mixture of potassium lactate and sodium diacetate. J Microbiol Biotechnol 19: 718-726.
  28. Oscar TP. 2005. Development and validation of primary, secondary, and tertiary models for growth of Salmonella Typhimurium on sterile chicken. J Food Prot 68: 2606- 2613. https://doi.org/10.4315/0362-028X-68.12.2606
  29. Bhatia A, Zahoor S. 2007. Staphylococcus aureus enterotoxins: A review. J Clin Diagn Res 1: 188-197.
  30. McElroy DM, Jaykus LA, Foegeding PM. 2000. Validation and analysis of modeled predictions of growth of Bacillus cereus spores in boiled rice. J Food Prot 63: 268-272. https://doi.org/10.4315/0362-028X-63.2.268
  31. Park JY. 2011. Predictive models for growth of Staphylococcus aureus on steamed spinach with seasoning in commissary school food service. MS Thesis. Yeungnam University, Gyeongsan, Korea.

Cited by

  1. in Fried Rice Served at Restaurants pp.1556-7125, 2017, https://doi.org/10.1089/fpd.2017.2334
  2. A risk assessment study of Bacillus cereus in packaged tofu at a retail market in Korea vol.29, pp.3, 2013, https://doi.org/10.1007/s10068-019-00670-0
  3. 저장온도에 따른 마른김(Pyropia pseudolinearis)의 Bacillus cereus 성장예측모델 개발 vol.53, pp.5, 2020, https://doi.org/10.5657/kfas.2020.0699