Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.
The 3th International Conference on Construction Engineering and Project Management
/
pp.417-424
/
2009
For a construction project to progress smoothly, effective cost estimation is vital, particularly in the conceptual and schematic design stages. In these early phases, despite the fact that initial estimates are highly sensitive to changes in project scope, owners require accurate forecasts which reflect their supplying information. Thus, cost estimators need effective estimation strategies. Practically, parametric cost estimates are the most commonly used method in these initial phases, which utilizes historical cost data (Karshenas 1984, Kirkham 2007). Hence, compilation of historical data regarding appropriate cost variance governing parameters is a prime requirement. However, precedent practice of data mining (data preprocessing) for denoising internal errors or abnormal values is needed before compilation. As an effort to deal with this issue, this research proposed a statistical methodology for data preprocessing and verified that data preprocessing has a positive impact on the enhancement of estimate accuracy and stability. Moreover, Statistically Preprocessed data Based Parametric (SPBP) cost models are developed based on multiple regression equations and verified their effectiveness compared with conventional cost models.
본 연구에서는 가속도 센서의 각 축의 값들을 이용해 숫자나 특정 입력 값을 기기에 전달할 수 있는 제스처 인식을 위한 센서 값들의 효율적인 사전 보정 알고리즘과 분류 알고리즘에 대해서 제안한다. 실험결과 보정 전과 보정 후의 X축과 Z축의 에러율을 통하여 전처리 된 데이터가 생성됨을 알 수 있었다. 또한 전처리 된 데이터에 적용할 정규화와 분류 알고리즘으로 구현한 인식기가 높은 인식률을 보여주었다.
Kim, Sun-Ja;Hwang, Doh-Yeun;Yoo, Gi-Hyoung;You, Kang-Soo;Kwak, Hoon-Sung
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2005년도 ICCAS
/
pp.2485-2489
/
2005
This paper introduces a new preprocessing scheme to replace original data of gray scale images with particular ordered data so that performance of lossless compression can be improved more efficiently. As a kind of preprocessing technique to maximize performance of entropy encoder, the proposed method converts the input image data into more compressible form. Before encoding a stream of the input image, the proposed preprocessor counts co-occurrence frequencies for neighboring pixel pairs. Then, it replaces each pair of adjacent gray values with particular ordered numbers based on the investigated co-occurrence frequencies. When compressing ordered image using entropy encoder, we can expect to raise compression rate more highly because of enhanced statistical feature of the input image. In this paper, we show that lossless compression rate increased by up to 37.85% when comparing results from compressing preprocessed and non-preprocessed image data using entropy encoder such as Huffman, Arithmetic encoder.
2020 년대 K-Pop 시장은 보이그룹보다 걸그룹이, 3 세대보다 4 세대가 전반에서 주목받았다. 해당 논문은 걸그룹의 세대가 바뀌기 시작했는지 알아보고자 가사 군집화에 대한 방법과 결과를 제시한다. 2013 년부터 2022 년까지 발표된 47 개 그룹의 1469 곡에 대한 메타정보를 수집하여 가사 정보와 가사 외 메타정보로 분류하여 각각 수치화했다. 가사 정보는 선행연구를 기반으로 단어역문서 빈도 벡터화를 적용한 뒤 상위 벡터 값만 선정하는 전처리를 하였다. 가사 외 메타정보는 가사 정보만 사용했을 때의 편향성을 줄이고 더 좋은 군집화 결과를 보여주기 위해 One-Hot Encoding 으로 전처리하여 적용했다. 전처리된 데이터에 대한 군집화 성능은 Spherical K-Means 의 Silhouette Coefficient, Calinski-Harabasz Score 가 Hierarchical Clustering 에 비해 각각 129%, 45% 더 높았다. 본 연구는 한국 대중가요 발전사와 걸그룹 가사 분석 및 군집화 연구에 기여할 수 있을 것으로 기대된다.
The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.
본 연구에서 사용한 전처리 나물류 중 고사리 경우 $13^{\circ}C$에서 B. cereus 영양세포 및 포자가, $8^{\circ}C$에서 S. aureus는 성장하지 않았다. 전처리 나물류 및 구근류에서 B. cereus 영양세포 및 포자의 성장특성을 비교한 결과, 도라지와 취나물에서 LT, SGR 및 MPD는 B. cereus 영양세포와 포자사이에 유의적인 차이를 보이지 않았다. 반면 우엉은 $13^{\circ}C$에 저장한 경우 B. cereus 영양세포와 포자의 유도기는 유의적인 차이를 보였으며 고사리의 경우, 17, 24, $35^{\circ}C$ 온도에서 B. cereus 포자의 유도기는 영양세포의 유도기 값보다 2배 연장된 것으로 유의적인 차이를 나타내었다(P<0.05). $24^{\circ}C$와 $35^{\circ}C$의 상온에서는 모든 나물류 및 구근류에서 B. cereus 포자 유도기는 영양세포의 유도기보다 연장되었고, SGR 값은 포자가 빠른 것으로 나타났다. 한편, $13^{\circ}C$와 $17^{\circ}C$에서는 B. cereus 영양세포와 포자의 유도기가 고온에 비하여 연장되어 B. cereus 영양세포와 포자의 성장을 억제하기 위해서는 $13^{\circ}C$ 이하의 온도 관리가 중요하다. 또한 B. cereus와 S. aureus 영양세포의 성장특성 비교 결과, $13^{\circ}C$ 이하에서는 B. cereus 성장이 관찰되지 않았으나 S. aureus는 $8^{\circ}C$에서도 성장하였다. 전반적으로 $13^{\circ}C$에서 모든 나물류 및 구근류는 B. cereus의 유도기가 S. aureus 의 유도기보다 3배 이상 연장되었다. 전처리 나물류 및 구근류에서 개발된 설사형 B. cereus 영양세포 및 포자 성장예측모델을 구토형 B. cereus 영양세포 및 포자의 실험값으로 검증한 결과, 도라지와 고사리의 LT 모델과 고사리의 SGR 모델을 제외한 모든 모델에서 Bf 값이 허용범위(0.07~1.15)에 속하여 설사형 B. cereus 영양세포, 포자 성장모델이 구토형 B. cereus 영양세포, 포자의 성장을 예측하는데 적합한 것으로 나타났다. 또한 전처리 나물류 및 구근류에서 $8{\sim}35^{\circ}C$ 사이에 개발된 S. aureus의 성장예측 모델을 실험에 사용하지 않은 온도(18, $30^{\circ}C$)로 적합성을 검증한 결과, 도라지의 SGR 모델을 제외한 모든 모델에서 Bf와 Af 값이 가장 이상적인 1에 가까운 값으로 나타나 실험값과 예측값 사이의 일치성을 보였다. 본 연구 결과 개발된 전처리 나물류 및 구근류의 성장예측 모델은 병원성 미생물의 증식을 억제하는 기준과 규격 설정 시 활용 가능할 것이며, 전처리 나물류의 HACCP 공정의 CCP(critical control point) 및 CL(critical limit)을 설정하는데 유용한 자료로 활용될 수 있을 것으로 사료된다.
As the big data analysis technologies has been developed worldwide, the importance of asset management for electric power facilities based data analysis is increasing. It is essential to secure quality of data that will determine the performance of the RISK evaluation algorithm for asset management. To improve reliability of asset management, asset data must be preprocessed. In particular, the process of cleaning dirty data is required, and it is also urgent to develop an algorithm to reduce time and improve accuracy for data treatment. In this paper, the result of the development of an automatic cleaning algorithm specialized in overhead transmission asset data is presented. A data cleaning algorithm was developed to enable data clean by analyzing quality and overall pattern of raw data.
Purpose: This study aimed to explore public opinion on workplace bullying in the nursing field, by analyzing the keywords and topics of online news comments. Methods: This was a text-mining study that collected, processed, and analyzed text data. A total of 89,951 comments on 650 online news articles, reported between January 1, 2013 and July 31, 2018, were collected via web crawling. The collected unstructured text data were preprocessed and keyword analysis and topic modeling were performed using R programming. Results: The 10 most important keywords were "work" (37121.7), "hospital" (25286.0), "patients" (24600.8), "woman" (24015.6), "physician" (20840.6), "trouble" (18539.4), "time" (17896.3), "money" (16379.9), "new nurses" (14056.8), and "salary" (13084.1). The 22,572 preprocessed key words were categorized into four topics: "poor working environment", "culture among women", "unfair oppression", and "society-level solutions". Conclusion: Public interest in workplace bullying among nurses has continued to increase. The public agreed that negative work environment and nursing shortage could cause workplace bullying. They also considered nurse bullying as a problem that should be resolved at a societal level. It is necessary to conduct further research through gender discrimination perspectives on nurse workplace bullying and the social value of nursing work.
In this paper a new approach of digitalized ‘Takbon’ is introduced. By image signal processing, the letters which were written on stones can be deciphered. Epigraphic letter is detected by digital image device, digital camera. The two dimensional digital image is preprocessed because of sensor noise and detective turbulence. Color image is transformed into grey level. The letter image is analyzed in time/frequency domain. By the resultant analysis data decisive functions are calculated. Signal Processing techniques, such as scaling, clipping, digital negative, high/low filter, morphology and so on, provide algorithms that can extract letter from stones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.