• 제목/요약/키워드: Premixed swirl burner

검색결과 36건 처리시간 0.019초

선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성 (Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System)

  • 차천륜;황상순
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.

선회유동을 가지는 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Swirling Premixed Lifted Flames)

  • 강성모;김용모;정재화;안달홍
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.89-95
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

석탄가스 난류선회유동 예혼합부상화염의 안정성 해석 (Numerical Study on the Stabilization of Turbulent Swirling Lifted Premixed Syngas Flames)

  • 강성모;이정원;김용모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.349-352
    • /
    • 2008
  • This study has numerically modeled the combustion processes of the turbulent swirling premixed lifted syngas flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role of stabilizing the turbulent lifted flames. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model. Numerical results indicate clearly that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling premixed lifted flames in the low-swirl burner. Computations are made for the wide range of the syngas chemical composition and the dilution level at two pressure conditions (1.0, 5.0 bar). Numerical results indicate that the lifted height in the LSB is increased by decreasing the H2 percentage and increasing the dilution level at the given equivalence ratio. It is also found that the flashback is occurred for the hydrogen composition higher than 80% at the equivalence ratio, 0.8. However, at the syngas composition range in the IGCC system, the stable lean-premixed lifted flames are formed at the low-swirl burner.

  • PDF

저 스월 버너에서의 난류 예혼합 부상화염장의 해석 (Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner)

  • 강성모;이정원;김용모;정재화;안달홍
    • 한국연소학회지
    • /
    • 제12권3호
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

스월 예혼합 버너의 공기유입 속도가 NO 배출특성에 미치는 영향에 관한 수치해석 (A Numerical Study on Effects of an Air Inflow Velocity on NOx emission from a Swirl Premixed Burner)

  • 박준호;조천현;손채훈;조주형;김한석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.237-238
    • /
    • 2014
  • A correlation between an air inflow velocity and $NO_x$ emission is investigated numerically. The area of a swirl premixed burner is controlled geometrically to increase or decrease an air inflow velocity. When an air velocity increases, mixedness at the burner exit is improved and NO emission at the liner exit is reduced. Although the area of an air slit is the same, NO emission shows discrepancy due to difference of air slit shapes.

  • PDF

가스터빈 연소기의 연소장 해석을 위한 스월 예혼합 버너의 수치적 모델링에 관한 연구 (Study of Numerical Modeling of Swirl-Premix Burner for Simulation of Gas Turbine Combustion)

  • 백광민;손채훈
    • 대한기계학회논문집B
    • /
    • 제37권2호
    • /
    • pp.161-170
    • /
    • 2013
  • Double cone 버너를 장착한 스월 예혼합 연소기에 대한 유동 및 연소 특성을 분석하여 swirler 모델을 이용한 수치적 모델링 방법을 제시하였다. 버너 출구에서 형성되는 내부 재순환 영역을 근사적으로 구현하도록 swiler의 내 외경을 각각 56 mm, 152 mm로 결정하였으며 이를 토대로 유량, 반경 반향 속도를 결정하였다. 접선 방향 속도의 설정을 위해 swirl 각도와 재순환 각도를 도입하였으며 40 m/s인 경우 유사한 내부 재순환 영역이 형성되었다. 라이너 출구에서 온도와 속도의 오차는 각각 2.8%, 0%로 작았지만, NOx의 경우 67% 가량 감소한 결과를 보였다. Swirler 모델은 EV 버너의 유동 및 연소 특성을 근사적으로 모사하는 모델의 하나로서 정량적 평가 인자에서 오차를 보이지만, 유동 및 화염, NOx 형성 영역의 경향성이 유사하므로 swirler 모델을 채택하여 복잡한 형상의 발전용 가스터빈 연소기의 효율적인 수치해석이 타당할 것으로 판단된다.

마이크로 가스터빈을 위한 하이브리드/이중 선회제트 연소기의 개발 (Part II: 비반응 유동구조에 관한 수치해석) (Development of a Hybrid/Dual Swirl Jet Combustor for a Micro-Gas Turbine (Part II: Numerical Analysis on Isothermal Flow Structure))

  • 문선여;황해주;황철홍;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.201-202
    • /
    • 2012
  • The isothermal flow structure and mixing characteristics of a hybrid/dual swirl jet combustor for micro-gas turbine were numerically investigated. Location of pilot nozzle, angle and direction of swirl vane were varied as main parameters with constant fuel flow rates for each nozzle. As a result, the variation in location of pilot nozzle resulted in significant change in turbulent flow field near burner exit, in particular, center toroidal recirculation zone (CTRZ) as well as turbulent intensity, and thus flame stability and emission characteristics might be significantly changed. The swirl angle of $45^{\circ}$ provided similar recirculating flow patterns in a wide range of equivalence ratio (0.5~1.0). Compared to the co-swirl flow, the counter-swirl flow leaded to the reduction in CTRZ and fuel-air mixing near the burner exit and a weak interaction between the pilot partially premixed flame and the lean premixed flame. With the comparison of experimental results, it was confirmed that the case of co-swirl flow and swirl $angle=45^{\circ}$ would provided an optimized combustor performance in terms of flame stability and pollutant emissions.

  • PDF

이중 선회버너에서 연소실 직경에 따른 온도장 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Temperature field according to the Combustor Diameters in the Dual Swirl Burner)

  • 최인찬;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.107-108
    • /
    • 2013
  • An experimental study in the dual swirl burner was conducted to analyze the temperature characteristics in the combustion field. The dual swirl burner consists of a main swirling pre-mixed flame with tangential swirler surrounding a pilot which can stabilize a diffusion flame or a partially premixed flame with vane swirler depending on whether fuel is supplied at the exit plane or further upstream. The purpose of this study is to analyse experimentally the characterization of flame temperature in the reacting zone, specially, according to the various combustor diameters like 80mm, 100mm, 130mm and 150mm(O.D). As a result, the temperatures of combustion field were decreased as the diameter of combustor increased. Therefore, these results can be expected that the larger diameter of combustor tend to emit less NOx emission than the small combustor.

  • PDF

희박한 당량비 구간에서 이중 선회버너의 배출특성 연구 (Emission studies of a dual swirl burner in the region of lean equivalence ratios)

  • 박태준;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.111-112
    • /
    • 2013
  • An experimental study of a dual swirl burner was conducted to analyze NOx emission in the lean conditions. The dual swirl burner is composed of a combination of swirling jet premixed(main section) and diffusion flames(pilot section). It was operated with a co-swirling configuration and overall equivalence ratios between 0.6 and 0.8. The purpose of this study is to analyze experimentally the characterization of flame temperature and NOx concentration in reacting zone and to supply the useful experimental data for numerical simulations. The measurements of temperature and NOx concentration were captured using a thin digitally-compensated thermocouple and a sampling quartz probe with quenching effect of sudden expansion, and were measured by the NOx analyzer of chemiluminescence method. We could analyse the NOx emission characteristics comparing the temperature distributions in the lean equivalence ratios.

  • PDF