• Title/Summary/Keyword: Premixed Flames

Search Result 356, Processing Time 0.026 seconds

Lift-off and Flame Stability of a Coaxial Non-Premixed Jet Using Oxygen Enriched Air (산소부화공기를 이용한 동축 제트화염의 부상과 연소 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.326-331
    • /
    • 2003
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improvement of the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. Especially lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Flame stability became improved since lift-off and blowout limit increased much with increase of OEC.

  • PDF

Study on Combustion Noise of Unsteady Flow (맥동류의 연소소음 연구)

  • Yang, Young Joon;Do, Seung Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.355-357
    • /
    • 2014
  • The usefulness of unsteady combustion was experimentally investigated using confined premixed flames stabilized by a rearward-facing step. For this purpose, apparatus of forced pulsating mixture supply, which could be modulated its amplitude and frequency, was designed. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations and furthermore it exhibits desirable performance, from a practical point of view, such as high load combustion and reduction of pollutant emission like nitric oxide.

  • PDF

A Study on Positive Use of Unsteady Combustion (비정상연소의 적극적 이용법에 관한 연구)

  • Yang, Young-Joon;Lee, Chi-Woo;Kim, Bong-Hwan;Akamatsu, Fumiteru
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.1-9
    • /
    • 2005
  • The usefulness of unsteady combustion was experimentally investigated using confined premixed flames stabilized by a rearward-facing step. For this purpose, apparatus of forced pulsating mixture supply, which could be modulated its amplitude and frequency, was designed. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations and furthermore it exhibits desirable performance, from a practical point of view, such as high load combustion and reduction of pollutant emission like nitric oxide.

  • PDF

A Study on Measurement of NO Concentrations in Laminar Nonpremixed $H_2/N_2$ Flame by LIF (레이저 유도 형광법(LIF)을 이용한 층류 비예혼합 $H_2/N_2$화염에서의 NO 농도측정에 관한 연구)

  • Kim, Sun-Wook;Jin, Seong-Ho;Kim, Gyung-Soo;Park, Kyoung-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.133-138
    • /
    • 2001
  • In this study, quantitative nitric oxide concentration distributions are investigated in the laminar nonpremixed $H_2/N_2$ flames by laser-induced fluorescence (LIF). The measurements are taken in flames for different $N_2$ dilution ratios varying from 20${\sim}$80%, and fuel now rate is fixed as lslpm. The NO A-X (0,0) vibrational band around 226 nm is excited using a XeCl excimer-pumped dye laser. We applied same excitation line used in $CH_4$ premixed flame. Overall, NO concentration was rapidly decreased with $N_2$ addition and we could not measure the concentration any longer for $N_2$ dilution above 80%.

  • PDF

Self-excitation of Edge Flame (에지화염의 자기 진동)

  • Park, Jeong;Youn, Sung Hwan;Chung, Yong Ho;Lee, Won June;Kwon, Oh Boong
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.167-170
    • /
    • 2012
  • Self-excitations of edge flame were studied in laminar lifted free- and coflow-jet as well as counterflow flames diluted with nitrogen and helium. The self-excitations, originated from variation of edge flame speed and found in the above-mentioned configurations, are discussed. A newly found self-excitation and flame blowout, caused by the conductive heat loss from premixed wings to trailing diffusion flame are described and characterized in laminar lifted jet flames. Some trials to distinguish Lewis-number-induced self-excitation from buoyancy-driven one with O(1.0 Hz) are introduced, and then the differences are discussed. In counterflow configuration, important role of the outermost edge flame in flame extinction is also suggested and discussed.

  • PDF

Effects of propane substitution for safety improvement of hydrogen-air flame (수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과)

  • Kwon, Oh-Chae
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.12-22
    • /
    • 2004
  • In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.

Two Conserved Scalar Approach for the Turbulent Nonpremixed Flames (다중 혼합기 난류 비예혼합 연소시스템에 대한 수치모델링)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.57-61
    • /
    • 2003
  • In the combustion modeling of non-premixed flames, the mixture fraction conserved scalar approach is widely utilized because reactants are mixed at the molecular level before burning and atomic elements are conserved in chemical reactions. In the mixture fraction approach, combustion process is simplified to a mixing problem and the interaction between chemistry and turbulence could be modelled by many sophisticated combustion models including the flamelet model and CMC. However, most of the mixture fraction approach is restricted to one mixture system. In this study, the flamelet model based on the two-feed system is extended to the multiple fuel-feeding systems by the two mixture fraction conserved scalar approach.

  • PDF

Study on Reattachment in Axisymmetric Laminar Lifted Flames (축대칭 층류부상화염에서 재부착현상에 관한 연구)

  • Lee, Jong-Soo;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 2000
  • Reattachment characteristics of laminar flames in partially premixed jets are studied for propane fuel mixed with air. As the flow rate decreases, liftoff height is decreased nonlinearly and the flame reattaches to a nozzle at a certain liftoff height. Using a jet theory by taking into account a virtual origin, it is predicted that flow velocity along a stoichiometric contour has a maximum value near nozzle. With this velocity characteristics, it is shown that reattachment mechanism can be explained by a balance between flame speed and flow velocity. Predicted displacement speeds at reattachment and liftoff agree qualitatively well with experimental findings.

  • PDF

Leading Edge Statistics of a Turbulent Premixed Flame (난류 예혼합 화염 선단부의 통계적 특성에 관한 수치적 연구)

  • Kwon, Jaesung;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • Leading edge statistics are obtained by direct numerical simulation(DNS) of freely propagating incompressible and stagnating compressible turbulent premixed flames. Conditional averages of velocities in terms of reaction progress variable, c, and local flame surface density, ${\sum}^{\prime}_f$, are defined and compared through the flame brush. It holds asymptotically that $<u>_f=<S_d>_f$ and $<u>_u-<u>_b=D_t/L_w$ with the characteristic length scale of $\bar{c}$ variation, $L_w$. It also holds that $<u>_b=<u>_f$ for a freely propagating flame under no mean strain rate. The turbulent burning velocity, $S_T$, is determined by the conditional statistics at the leading edge under large activation energy.

A Modeling Study of Local Equivalence Ratio Fluctuation in Imperfectly Premixed Turbulent Flames

  • Moon, Hee-Jang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1479-1489
    • /
    • 2004
  • The effect of fluctuation of Equivalence Ratio (ER) in a turbulent reactive field has been studied in order to check the global combustion characteristics induced by the local fluctuation. When the flow is premixed on a large scale, closer examination on a small scale reveals that local fluctuations of ER exist in an imperfectly premixed mixture, and that these fluctuations must be considered to correctly estimate the mean reaction rate. The fluctuation effect is analyzed with DNS by considering the joint PDF of reactive scalar and ER, followed by modeling study where an extension of stochastic mixing models accounting for the ER fluctuation is reviewed and tested. It was found that models prediction capability as well as its potential is in favor to this case accounting the local ER fluctuation. However, the effect of local fluctuation did not show any notable changes on the mean global characteristics of combustion when statistical independence between the reactive scalar and ER field is imposed, though it greatly influenced the joint PDF distribution. The importance of taking into account the statistical dependency between ER and combustible at the initial phase is demonstrated by testing the modeled reaction rate.