Browse > Article

Leading Edge Statistics of a Turbulent Premixed Flame  

Kwon, Jaesung (포항공과대학교 기계공학과 대학원)
Huh, Kang Y. (포항공과대학교 기계공학과)
Publication Information
Journal of the Korean Society of Combustion / v.18, no.1, 2013 , pp. 13-20 More about this Journal
Leading edge statistics are obtained by direct numerical simulation(DNS) of freely propagating incompressible and stagnating compressible turbulent premixed flames. Conditional averages of velocities in terms of reaction progress variable, c, and local flame surface density, ${\sum}^{\prime}_f$, are defined and compared through the flame brush. It holds asymptotically that $<u>_f=<S_d>_f$ and $<u>_u-<u>_b=D_t/L_w$ with the characteristic length scale of $\bar{c}$ variation, $L_w$. It also holds that $<u>_b=<u>_f$ for a freely propagating flame under no mean strain rate. The turbulent burning velocity, $S_T$, is determined by the conditional statistics at the leading edge under large activation energy.
Turbulent premixed combustion; Turbulent burning velocity; Stagnating flame; Freely propagating flame; Leading edge;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. B. Zeldovich, The Mathematical Theory of Combustion and Explosions, Consultants Bureau (1985).
2 A. Lipatnikov, J. Chomiak, "Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations", Prog. Energy Combust. Sci., 28 (2002) 1-74.   DOI   ScienceOn
3 J. F. Driscoll, "Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities", Prog. Energy Combust. Sci., 34 (2008) 91-134.   DOI   ScienceOn
4 B. Hakberg, A. D. Gosman, "Analytical determination of turbulent flame speed from combustion models", Proc. Combust. Inst., 20 (1985) 225-232.   DOI   ScienceOn
5 J. M. Duclos, D. Veynante, T. Poinsot, "A comparison of flamelet models for premixed turbulent combustion", Combust. Flame, 95 (1993) 101-117.   DOI   ScienceOn
6 C. A. Catlin, M. Fairweather, S. S. Ibrahim, "Predictions of turbulent, premixed flame propagation in explosion tubes", Combust. Flame, 102 (1995) 115-128.   DOI   ScienceOn
7 D. Lee, K. Y. Huh, "Validation of analytical expressions for turbulent burning velocity in stagnating and freely propagating turbulent premixed flames", Combust. Flame, 159 (2012) 1576-1591.   DOI   ScienceOn
8 A. Amato, M. Day, R. K. Cheng, J. Bell, T. Lieuwen, "Leading point statistics of a turbulent, Lean,$H_2$-Air flame", Spring Technical Meeting of the Central States Section of the Combustion Institute, April 22-24, 2012
9 D. Lee, K. Y. Huh, "Statistically Steady Incompressible DNS to Validate a New Correlation for Turbulent Burning Velocity in Turbulent Premixed Combustion", Flow, Turbulence Combust., 84 (2010) 339-356.   DOI   ScienceOn
10 K. N. C. Bray, P. A. Libby, J. B. Moss, "Unified modeling approach for premixed turbulent combustion- Part I: General formulation", Combust. Flame, 61 (1985) 87-102.   DOI   ScienceOn