• Title/Summary/Keyword: Preform

Search Result 465, Processing Time 0.026 seconds

Pressureless Infiltration Processing of B4C/Al Composite by Surface Modification (표면 개질에 의한 상압에서의 B4C/Al복합체 제조 방법)

  • 임경란;강덕일;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.128-131
    • /
    • 2003
  • Formation of$B_4C/Al$composite by pressureless infiltration was investigated by lowering wetting angle via surface modification of $B_4C$powder with alumina precursor. Surface modification was confirmed by zeta potential analysis. The$B_4C/Al$composite was prepared by placing an Al 6061 disk on the$B_4C$preform and heating at $1030{\circ}C$/20 min under a flowing argon, but no infiltration took place for a bare $B_4C$ preform even at$1250{\circ}C$/30 min. Analysis of XRD and SEM showed the $Al_3BC$phase besides$B_4C$and Al, but no trace of deteriorative$A1_4C_3$.

Forging Effect of Al6061 in Casting/Forging Process (주조/단조 공정에서 Al6061의 단조효과에 관한 연구)

  • Kwon, Oh-Hyuk;Bae, Won-Byong;Cho, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.45-50
    • /
    • 2005
  • In this study, the casting/forging process was applied in manufacturing a low control arm, in order to prove that application of casting/forging process to Al6061 is likely to get the effect of light weight compared with existing steel products and to reduce the cost of materials. Firstly, In order to set up the optimum casting condition of the forging material, Al6061, casting experiments were carried out by controlling pouring temperature of the aluminum for casting, mold temperature, and pouring time. $700^{\circ}C$ pouring temperature, $300^{\circ}C$ mold temperature and 10-second pouring time were taken into account as the optimum casting conditions. With respect to a hot forging test, it is practiced on the basis of a temperature of materials, strain rate, and reduction rate so as to observe each microstructure and examine strain-stress curve simultaneously; examine tensile test and hardness test; eventually set up the optimum hot forging condition. A hot forging test, tensile test, hardness experiment, and microstructure observation were carried out on condition of $70\%$ reduction rate, $500^{\circ}C$ temperature of materials, and 1 strain rate. As a result of those experiments, 330MPa tensile strength, $16.4\%$ elongation, and 122.8Hv hardness were recorded. In oder to get a sound preform which has no unfitting cavity and less flash, two preforms were proposed on the basis of volume rate of the final product; the optimum volume rate of preform for the low control arm was $115\%$. In conclusion, it is confirmed that using the forging material rather than casting materials in casting/forging process is likely to get more superior mechanical properties. Compared with Al6061, performed by means of general forging, moreover, cast/forged Al6061 can not only stimulate productivity by reducing production processes, but cut down the cost of materials by reusing forging scraps.

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.

Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes (열간단조 플랜지 금형의 형상에 따른 충전 및 응력해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2010
  • Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape ($10^{\circ}$ for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed.

Preform Deformation and Fiber Heat-Treatment Effect in Squeeze Cast $Al/Al_2O_3$ Metal Matrix Composites (용탕단조한 $Al/Al_2O_3$ 복합재료에서의 예비성형체 변형 및 섬유열처리 영향)

  • Ji, Dong-Chul;Jung, Sung-Sill;Cho, Kyung-Mok;Park, Ik-Min;Kim, Jin
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.62-70
    • /
    • 1993
  • This study presents the effect of applied pressure on the preform deformation during squeeze casting of $Al_2O_3$ short fiber reinforced aluminum alloy (AC8A) metal matrix composites. A preliminary model based on the general beam theory is suggested for the prediction of the preform deformation. Two different commercially available $Al_2O_3$ short fiber (Saffil, Kaowool) were used to study the influence of the fibers on the microstructure and mechanical properties of the squeeze cast $Al/Al_2O_3$ composites. The composites were fabricated with the applied pressure of 75 MPa which was found to be the optimum condition for the squeeze casting of the composites in this study. For the amorphous Kaowool fiber, hard crystalline Mullite phase was formed with heat treatment. Both of amorphous and the crystallized Kaowool fibers were used to fabricate $Al/Al_2O_3$ composites. Microhardness of crystallized Kaowool fiber revealed higher than that of the amorphous Kaowool fiber in the squeeze cast composites. It was also found that the wear resistance of Kaowool fiber reinforced composites increased with the amount of Mullite.

  • PDF

Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures (프리폼 구조에 따른 4방향성 탄소/탄소 복합재의 열물리적 특성)

  • Kim, Zeong-Baek;Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.580-586
    • /
    • 2007
  • In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at $2300^{\circ}C$. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites (적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발)

  • Park, Geon-Tae;Lee, Dong-Woo;Byun, Joon-hyung;Song, Jung-il
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

Numerical Simulation of Preform Molding Using Carbon Fabric (카본 패브릭을 이용한 프리폼 성형에 대한 수치모사)

  • Park, Eun-Min;Lee, Soon-Young;Choi, Kyung-Hwan;Kim, Sun Kyoung
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.61-67
    • /
    • 2020
  • Preforming is crucial in resin transfer molding process using woven fabric. When shear deformation exceeds the locking angle, wrinkles are generated in the preform, which causes defects in the RTM process. Therefore, in this study, the allowable shear deformation limit of carbon fiber woven fabrics is quantified and the molding characteristics are verified using the actual fabric forming. As a result, the characteristics of creases according to the layer setups have been examined and the results have been discussed. Numerical analyses have been also performed using measured shear properties. These results have been compared with the experimental results.

Fabrication and Characterization of Carbon Fiber Reinforced (탄소섬유강화 유리복합재료의 제조 및 특성분석)

  • Cho, H.S.;Kim, S.D.;Cho, H.J.;Kong, S.S.;Choi, W.B.;Baek, Y.K.;Kim, H.J.;Kim, H.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.601-608
    • /
    • 1992
  • We investigated the influence of several processes, including the preparation of slurry and preform and the heat-treatment of the preform, on the properties of composites to fabricate the carbon-fiber reinforced glass composites having good mechanical properties. Cerander was determined to be the best binder among Cerander, Rhoplex and Elvacite 2045 by the dipping test and the binder within a preform could be completely eliminatd by burning out the specimen under 10-6 Torr at 400$^{\circ}C$ for more than 1h. The fracture behavior of a composite was largely dependent on the uniformity of carbon-fiber distribution within the composite and the heat-treatment condition of the composite. The higher the glass content, the more difficult to obtain uniform distribution of carbon-fiber. As the hot-pressing temperature increased, the densification process of the composite and the formation of pore due to oxidation of carbon fiber occurred competitively. But, above 1000$^{\circ}C$ the latter played a predominant role. We could fabricated the densest 15 vol.% carbon-fiber-content glass composite having the highest toughness and flexural strength of 250 MPa by hot-pressing under 15 MPa at 900$^{\circ}C$ for 30 min.

  • PDF

Finite element analysis of a injection blow molding process for the thick-walled PET bottle (후육 벽 PET 용기에 대한 사출 블로우 성형의 유한요소해석)

  • Hong, Seok-Kwan;Song, Min-Jae;Ko, Young-Bae;Cha, Baeg-Soon
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2018
  • Plastic containers which provides the opportunity to reduce transportation costs are lighter and less brittle than glass containers. As a results, efforts to replace glass with plastic are ongoing. The blow molding method is a typical approach in producing plastic containers. Single-stage injection blow molding (ISBM) is one of the blow molding methods. However, the difficulty in controlling the temperature during the injection molding process is considered its main disadvantage. In this study, ISBM process analysis of relatively thick walled containers such as cosmetic containers is carried out. The initial temperature distribution of the preform is deemed to be the most influential factor in the accuracy of blow molding for the thick vessel. In order to accurately predict this, all heat transfer processes of the preform are considered. The validity of this analytical procedure is verified by comparing the cross-sectional thickness with the actual product. Finally, the validated analytical method is used to evaluate the factors affecting the thickness of the final molded part. The ISBM analysis technique for thick walled vessels developed through this study can be used as an effective predictor for preform design and blow process.