Browse > Article

Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures  

Kim, Zeong-Baek (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Ki-Woong (Department of Polymer Science and Engineering, Chungnam National University)
Park, Jong-Min (Department of Polymer Science and Engineering, Chungnam National University)
Joo, Hyeok-Jong (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.18, no.6, 2007 , pp. 580-586 More about this Journal
Abstract
In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at $2300^{\circ}C$. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.
Keywords
carbon/carbon composites; microstructure; specific heat; thermal conductivity; thermal expansion;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. Fitzer and L. M. Manocha, Mechanical properties of carbon/carbon composites. In: Carbon fiber reinforcement and carbon/carbon composites, 190, Springer, Berlin (1998)
2 O. Siron, G. chollon, H. Tsuda, H. Yamauchi, K. Maeda, and K. Kosaka, Carbon, 38, 1369 (2000)   DOI   ScienceOn
3 R. I. Baxter, R. D. Rawlings, N. Iwashita, and Y. Sawada, Carbon, 38, 441 (2000)   DOI   ScienceOn
4 K. Lafdi, A. Chin, and C. Bourgerette, Proceedings of the 22nd Biennial Conference on American Carbon Society, San Diego, CA, 92 (1995)
5 J. D. Zhang, Modern Composites, 78, Matter Press of China, Beijing (1997)
6 H. J. Joo, S. H. Ryu, and H. S. Ha, Carbon Science, 1, 158 (2001)
7 E. G. Steward, B. P. Look, and E. A. Kellett, Nature, 187, 1015 (1960)   DOI
8 J. Schulte-Fischdick, A. Zern, J. Mayer, M. Rühle, M. Friess, W. Krenkel, and R. Kochendorfer, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332, 146 (2002)
9 T. Oku, A. Kurumada, T. Sogabe, T. Oku, T. Hiraoka, and K. Kuroda, J. Nucl. Mater., 257, 59 (1998)
10 K. Y. Sheem, I. S. Oh, D. M. Choi, H. J. Joo, and B. I. Yoon, J. Korean Soc. Compos. Mater., 8, 9 (1995)
11 D. K. L. Tsang, B. J. Marsden, S. L. Fok, and G. Hall, Carbon, 43, 2902 (2005)   DOI   ScienceOn
12 A. J. Whittaker, R. Taylor, and H. Tawil, Proc. R. Soc. of London A-Math. Phys. Eng. Sci., 430, 167 (1990)
13 Y. J. Lee and H. J. Joo, Compos. Pt. A-Appl. Sci. Manuf., 35, 1285 (2004)
14 L. M. Manocha, A. Warrier, S. Manocha, D. Sathiyamoorthy, and S. Banerjee, Carbon, 44, 480 (2006)   DOI   ScienceOn
15 H. Tawil, L. D. Bentsen, S. Baskaran, and D. P. H. Hasselman, J. Mater. Sci., 20, 3201 (1985)   DOI   ScienceOn
16 R. Ruo, T. Liu, J. Li, H. Zhang, Z. Chen, and G. Tian, Carbon, 42, 2887 (2004)   DOI   ScienceOn