• Title/Summary/Keyword: Preference Goods Recommendation

Search Result 19, Processing Time 0.027 seconds

On-line Recommendation Service Algorithm using Human Sensibility Ergonomics (감성공학을 이용한 온라인 추천 서비스 알고리즘)

  • 임치환
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. This paper deals with an intelligent agent approach to incorporate customer's sensibility into an one-to-one recommendation service in on-line shopping mall. In this paper the focus of interest is on-line recommendation service algorithm for development of Human Sensibility based web agent system. The recommendation agent system composed of seven services including specialized algorithm. The on-line recommendation service algorithm use human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system's behavior requires the parallel execution of several tasks during the interaction (e.g., identifying the customer's emotional preference and dynamically generating the pages of the store catalog). Most of the present shopping malls go through the catalog of goods, but the future shopping malls will have the form of intelligent shopping malls by applying the on-line recommendation service algorithm.

Development of Human Sensibility Based Web Agent for On-line Recommendation Service (온라인 추천 서비스를 위한 감성 기반 웹 에이전트 개발)

  • Im, Chi-Hwan;Jeong, Gyu-Ung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In recent years, with the advent of e-Commerce the need for personalized services and one-to-one marketing has been emphasized. To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. In this paper, we provide an intelligent agent approach to incorporate human sensibility into an one-to-one recommendation service in cyber shopping mall. Our system exploits human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system`s behavior requires the parallel execution of several tasks during the interaction (e. g., identifying the customer`s emotional preference and dynamically generating the pages of the store catalog). The recommendation agent system composed of five modules including specialized agents carries on these tasks. By presenting goods that are consistent with user interests as well as user sensibility, the accuracy and satisfaction of the recommendation service may be improved.

Implementation of Intelligent Preference Goods Recommendation System Using Customer's Profiles and Interest Measuring based on RFID (RFID 기반의 고객 프로파일과 관심도 측정을 이용한 지능형 선호상품 추천 시스템의 구현)

  • Lim, Sang-Min;Lee, Keun-Wang;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1625-1631
    • /
    • 2008
  • This paper is going to research about RFID real time position finder technology and the offline shopping mall's client shop list managed by the RF fused Tag USB memory to analyze out the output of the data for providing real time interactive customer intelligence commodity system.

A Recommendation System Based on Customer Preference Analysis and Filter Management (고객 성향 분석과 필터 관리 기반 추천 시스템)

  • 이성구
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.4
    • /
    • pp.592-600
    • /
    • 2004
  • A recommendation system, which is an application area of e-CRM in e-commerce environment, provides individualized goods recommendation service that meets the demand of individual users. In general, existing recommendation systems require extensive historic user information in application domains. However, the method of recommendation based on static historic user information needs to respond flexibly to users'demand that changes rapidly and sensitively over time and in domains including a variety of users. In addition, it is difficult to recommend for new users who are not fall into any of existing domains. To overcome such limitations and provide flexible recommendation service, this study designed and implemented CPAR (Customer Preference Analysis Recommender) system that supports customer preference analysis and filter management. The filtering management capacity of the present system eases the necessity of extensive information about new users. In addition, CPAR system was implemented in XML-based wireless Internet environment for recommendation service independent from platforms and not limited by time and place.

  • PDF

Improving the MAE by Removing Lower Rated Items in Recommender System

  • Kim, Sun-Ok;Lee, Seok-Jun;Park, Young-Seo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.819-830
    • /
    • 2008
  • Web recommender system was suggested in order to solve the problem which is cause by overflow of information. Collaborative filtering is the technique which predicts and recommends the suitable goods to the user with collection of preference information based on the history which user was interested in. However, there is a difficulty of recommendation by lack of information of goods which have less popularity. In this paper, it has been researched the way to select the sparsity of goods and the preference in order to solve the problem of recommender system's sparsity which is occurred by lack of information, as well as it has been described the solution which develops the quality of recommender system by selection of customers who were interested in.

  • PDF

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

Web Recommendation Mechanism Based on Case-Based Reasoning and Web Data Mining

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.443-446
    • /
    • 2002
  • In this research, we suggest a Web-based hybrid recommendation mechanism using CBR (Case-Based Reasoning) and web data mining. Data mining is used as an efficient mechanism in reasoning for relationship between goods, customers' preference and future behavior. CBR systems are normally used in problems for which it is difficult to define rules. We use CBR as an AI tool to recommend the similar purchase case. A Web-log data gathered in real-world Internet shopping mall was given to illustrate the quality of the proposed mechanism. The results showed that the CBR and web data mining-based hybrid recommendation mechanism could reflect both association knowledge and purchase information about our former customers.

Implementation of Preference Goods Recommendation System Using Shopping Customer's Location Tracking (쇼핑 고객 위치추적을 이용한 선호 상품 추천 시스템의 구현)

  • Lee, Keun-Wang;Lim, Sang-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.21-24
    • /
    • 2008
  • 본 논문에서는 오프라인 쇼핑몰에서 위치추적 기술과 동선분석을 이용하여 오프라인 쇼핑몰 고객의 위치분석 데이터를 분석한 결과를 토대로 고객에게 실시간 대화형(Interactive) 서비스 제공을 위한 선호 상품 시스템을 설계하여 쇼핑효과를 극대화하며, 고객 만족도를 향상시킬 수 있도록 돕는데 그 목적이 있다.

  • PDF

A Design and Implementation of Shopping Preference Goods Recommendation System Using Ubiquitous Agent Technology (유비쿼터스 에이전트 기술을 이용한 쇼핑 선호 상품 추천 시스템의 설계 및 구현)

  • Jin, Byung-Wook;Lee, Keun-Wang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.103-106
    • /
    • 2009
  • 본 논문에서는 RFID 태그를 이용하여 고객의 위치를 인식할 수 있는 개체 인식 기술과 고객의 현재 위치 및 쇼핑 동선파악을 위한 데이터 무선 전송 및 저장 기술, 마지막으로 고객화된 정보를 자동으로 생성하고 적시에 해당 고객에게 제공해 줄 유비쿼터스형 에이전트 기술을 적용하여 쇼핑 선호 상품 추천 시스템을 설계 및 구현 하고자 한다.

  • PDF

Implementation of Preference Goods Recommendation System Using Shopping Customer's Location Tracking (쇼핑 고객 위치추적을 이용한 선호 상품 추천 시스템의 구현)

  • Lim, Sang-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.539-542
    • /
    • 2010
  • 본 논문에서는 오프라인 쇼핑몰에서 위치추적 기술과 동선분석을 이용하여 오프라인 쇼핑몰 고객의 위치분석 데이터를 분석한 결과를 토대로 고객에게 실시간 대화형(Interactive) 서비스 제공을 위한 선호 상품 시스템을 설계하여 쇼핑효과를 극대화하며, 고객 만족도를 향상시킬 수 있도록 돕는데 그 목적이 있다.

  • PDF