• Title/Summary/Keyword: Predictive modeling

Search Result 355, Processing Time 0.027 seconds

Obstacle Parameter Modeling for Model Predictive Control of the Unmanned Vehicle (무인자동차의 모델 예측제어를 위한 장애물 파라미터 모델링 기법)

  • Yeu, Jung-Yun;Kim, Woo-Hyun;Im, Jun-Hyuck;Lee, Dal-Ho;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1132-1138
    • /
    • 2012
  • The MPC (Model Predictive Control) is one of the techniques that can be used to control an unmanned vehicle. It predicts the future vehicle trajectory using the dynamic characteristic of the vehicle and generate the control value to track the reference path. If some obstacles are detected on the reference paths, the MPC can generate control value to avoid the obstacles imposing the inequality constraints on the MPC cost function. In this paper, we propose an obstacle modeling algorithm for MPC with inequality constraints for obstacle avoidance and a method to set selective constraint on the MPC for stable obstacle avoidance. Simulations with the field test data show successful obstacle avoidance and way point tracking performance.

KOSPI index prediction using topic modeling and LSTM

  • Jin-Hyeon Joo;Geun-Duk Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.73-80
    • /
    • 2024
  • In this paper, we proposes a method to improve the accuracy of predicting the Korea Composite Stock Price Index (KOSPI) by combining topic modeling and Long Short-Term Memory (LSTM) neural networks. In this paper, we use the Latent Dirichlet Allocation (LDA) technique to extract ten major topics related to interest rate increases and decreases from financial news data. The extracted topics, along with historical KOSPI index data, are input into an LSTM model to predict the KOSPI index. The proposed model has the characteristic of predicting the KOSPI index by combining the time series prediction method by inputting the historical KOSPI index into the LSTM model and the topic modeling method by inputting news data. To verify the performance of the proposed model, this paper designs four models (LSTM_K model, LSTM_KNS model, LDA_K model, LDA_KNS model) based on the types of input data for the LSTM and presents the predictive performance of each model. The comparison of prediction performance results shows that the LSTM model (LDA_K model), which uses financial news topic data and historical KOSPI index data as inputs, recorded the lowest RMSE (Root Mean Square Error), demonstrating the best predictive performance.

A Modeling of Proportional Pressure Control Valve and its Control (비례전자 감압밸브의 모델링과 제어)

  • Yang, K.U.;Lee, I.Y.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.71-77
    • /
    • 2002
  • In this study, a dynamic model of proportional pressure control valve using the bond graph and a predictive controller are presented in the form of dynamic matrix control which is concerned with a design method of digital controller for the electro hydraulic servo system. The bond graph can be utilized for all types of systems which involve power and energy, and it is applied to a propotional pressure control valve in this study. Recently, many researchers suggested that better control performance could be obtained by means of the predictive controls with future reference input, future control output and future control error. The Predictive controller is very practical because the controller can be easily applicable to a personal computer or a microprocessor. This study investigates through numerical simulations that hydraulic system with the predictive controller shows very good control performances.

  • PDF

A semiparametric method to measure predictive accuracy of covariates for doubly censored survival outcomes

  • Han, Seungbong;Lee, JungBok
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.4
    • /
    • pp.343-353
    • /
    • 2016
  • In doubly-censored data, an originating event time and a terminating event time are interval-censored. In certain analyses of such data, a researcher might be interested in the elapsed time between the originating and terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model evaluation method to measure the predictive ability of a model based on negative predictive values. We use a semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely used to build prediction models or nomograms.

A Study on the Evaluation of an Expert System에s Performance : Lens Model Analysis (전문가시스템의 성능평가에 관한 연구 : 렌즈모델분석)

  • 김충영
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.1
    • /
    • pp.117-135
    • /
    • 2004
  • Since human decision making behavior is likely to follow nonlinear strategy, it is conjectured that the human decision making behavior can be modeled better by nonlinear models than by linear models. All that linear models can do is to approximate rather than model the decision behavior. This study attempts to test this conjecture by analyzing human decision making behavior and combining the results of the analysis with predictive performance of both linear models and nonlinear models. In this way, this study can examine the relationship between the predictive performance of models and the existence of valid nonlinear strategy in decision making behavior. This study finds that the existence of nonlinear strategy in decision making behavior is highly correlated with the validity of the decision (or the human experts). The second finding concerns the significant correlations between the model performance and the existence of valid nonlinear strategy which is detected by Lens Model. The third finding is that as stronger the valid nonlinear strategy becomes, the better nonlinear models predict significantly than linear models. The results of this study bring an important concept, validity of nonlinear strategy, to modeling human experts. The inclusion of the concept indicates that the prior analysis of human judgement may lead to the selection of proper modeling algorithm. In addition, lens Model Analysis is proved to be useful in examining the valid nonlinearity in human decision behavior.

  • PDF

Motion Control of Flexible Mechanical Systems Using Predictive & Neural Controller (예측. 신경망 제어기를 이용한 유연 기계 시스템의 운동제어)

  • 김정석;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.538-541
    • /
    • 1995
  • Joint flexibilities and frictional uncertainties are known to be a major cause of performance degration in motion control systems. This paper investigates the modeling and compensation of these undesired effects. A hybrid controller, which consists of a predictive controller and a neural network controller, is designed to overcome these undesired effects. Also learning scheme for friction uncertainies, which don't interfere with feedback controller dynamics, is discussed. Through simulation works with two inetia-torsional spring system having Coulomb friction, the effectiveness of the proposed hybrid controller was tested. The proposed predictive & neural network hybrid controller shows better performance over one when only predictive controller used.

  • PDF

Fuzzy Model Based Generalized Predictive Control for Nonlinear System (비선형 시스템을 위한 퍼지모델 기반 일반예측제어)

  • Lee, Chul-Heui;Seo, Seon-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.697-699
    • /
    • 2000
  • In this paper, an extension of model predictive controller for nonlinear process using Takagi-Sugeno(TS) fuzzy model is proposed Since the consequent parts of TS fuzzy model comprise linear equations of input and output variables. it is locally linear, and the Generalized Predictive Control(GPC) technique which has been developed to control Linear Time Invariant(LTI) plants, can be extended as a parallel distributed controller. Also fuzzy soft constraints are introduced to handle both equality and inequality constraints in a unified form. So the traditional constrained GPC can be transferred to a standard fuzzy optimization problem. The proposed method conciliates the advantages of the fuzzy modeling with the advantages of the constrained predictive control, and the degree of freedom is increased in specifying the desired process behavior.

  • PDF

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.

Nonlinear Models and Linear Models in Expert-Modeling A Lens Model Analysis (전문가 모델링에서 비선형모형과 선형모형 : 렌즈모형분석)

  • 김충녕
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.1-16
    • /
    • 1995
  • The field of human judgment and decision making provides useful methodologies for examining the human decision making process and substantive results. One of the methodologies is a lens model analysis which can examine valid nonlinearity in the human decision making process. Using the method, valid nonlinearity in human decision behavior can be successfully detected. Two linear(statistical) models of human experts and two nonlinear models of human experts are compared in terms of predictive accuracy (predictive validity). The results indicate that nonlinear models can capture factors(valid nonlinearity) that contribute to the expert's predictive accuracy, but not factors (inconsistency) that detract from their predictive accuracy. Then, it is argued that nonlinear models cab be more accurate than linear models, or as accurate as human experts, especially when human experts employ valid nonlinear strategies in decision making.

  • PDF

Analysis of SEER Glassy Cell Carcinoma Data: Underuse of Radiotherapy and Predicators of Cause Specific Survival

  • Cheung, Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.353-356
    • /
    • 2016
  • Background: This study used receiver operating characteristic curve to analyze Surveillance, Epidemiology and End Results (SEER) for glassy cell carcinoma data to identify predictive models and potential disparities in outcome. Materials and Methods: This study analyzed socio-economic, staging and treatment factors. For risk modeling, each factor was fitted by a generalized linear model to predict the cause specific survival. Area under the receiver operating characteristic curves (ROCs) were computed. Similar strata were combined to construct the most parsimonious models. A random sampling algorithm was used to estimate modeling errors. Risk of glassy cell carcinoma death was computed for the predictors for comparison. Results: There were 79 patients included in this study. The mean follow up time (S.D.) was 37 (32.8) months. Female patients outnumbered males 4:1. The mean (S.D.) age was 54.4 (19.8) years. SEER stage was the most predictive factor of outcome (ROC area of 0.69). The risks of cause specific death were, respectively, 9.4% for localized, 16.7% for regional, 35% for the un-staged/others category, and 60% for distant disease. After optimization, separation between the regional and unstaged/others category was removed with a higher ROC area of 0.72. Several socio-economic factors had small but measurable effects on outcome. Radiotherapy had not been used in 90% of patients with regional disease. Conclusions: Optimized SEER stage was predictive and useful in treatment selection. Underuse of radiotherapy may have contributed to poor outcome.