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Abstract
In doubly-censored data, an originating event time and a terminating event time are interval-censored. In

certain analyses of such data, a researcher might be interested in the elapsed time between the originating and
terminating events as well as regression modeling with risk factors. Therefore, in this study, we introduce a model
evaluation method to measure the predictive ability of a model based on negative predictive values. We use a
semiparametric estimate of the predictive accuracy to provide a simple and flexible method for model evaluation
of doubly-censored survival outcomes. Additionally, we used simulation studies and tested data from a prostate
cancer trial to illustrate the practical advantages of our approach. We believe that this method could be widely
used to build prediction models or nomograms.

Keywords: double censoring, model evaluation, predictive ability, prostate cancer, variable selec-
tion

1. Introduction

It is important to evaluate the predictive accuracy of prognostic variables in order to build parsimo-
nious but trustworthy prediction models. Our motivating example comes from a randomized clinical
trial conducted to compare treatment arms (docetaxel with doxercalciferol vs. docetaxel only) (Attia
et al., 2008). This trial collected prostate cancer data from October 2002 to July 2005 in order to
compare cancer progression rates and overall survival rates. In the present study, we were interested
in assessing the predictive capacity of the treatment arms, baseline prostate-specific antigen (PSA),
and other biomarker values such as hemoglobin and alkaline phosphatase levels, in relation to the
time-to-death after the cancer relapses.

Multiple approaches can summarize the predictive accuracy of variables. For example, Heagerty
et al. (2000) suggested a nonparametric estimator for sensitivity and specificity as well as constructed
time-dependent receiver operating characteristic (ROC) curves based on a nonparametric kernel esti-
mator. Heagerty and Zheng (2005) defined the sensitivities and specificities, termed ‘incident/static’
and ‘cumulative/dynamic’ respectively as well as estimated the time-dependent ROC using Cox mod-
els. Chambless and Diao (2006) introduced an AUC estimator using the Kaplan-Meier approach re-
cursively, whereas Cai et al. (2006) estimated the time-dependent ROC via generalized linear models
and proposed an asymptotic distribution theory for parameter estimates. The aforementioned pro-
cedures were proposed under the correctly specified working model, Uno et al. (2007) suggested
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Figure 1: A schema for doubly-censored survival data. Originating event time U and the terminating event time
V could be exact, right-censored, or interval-censored. The elapsed time is denoted by T = V −U. Both U and V
are known only within an interval (L,R] and (P,Q]. Here, P = Q or Q = ∞ represent exact observations of death

time or right-censored survival time.

consistent estimators for the sensitivity, specificity, and overall misclassification rate to predict future
t-year survivors as well as removed the correct working model assumption. More recently, Song et al.
(2012) proposed an overall predictive capacity across a certain time range without dependence on a
Cox-type model. The majority of procedures mentioned so far function with right-censored survival
data; however, the survivorship after recurrence of cancer is doubly-censored in the prostate cancer
data from our motivating example.

Figure 1 shows a schema for doubly-censored data. The first event, the time to cancer recurrence,
is assessed by periodic patient screening. In general, cancer recurrence time (U) is measured between
the most recent relapse-free visit time (L) and the first visit time (R) at which the recurrence was de-
tected. Furthermore, a secondary event, namely overall survival time V , is right-censored. Therefore,
the doubly-censored data consists of two interval-censored endpoints (L,R] and (P,Q]. Here, P = Q
or Q = ∞ represent exact observations of death time or right-censored survival time. Our interest lies
in measuring the predictive accuracy of covariate combinations for the elapsed time between the two
events (T = V − U).

To the best of our knowledge, a method for measuring the predictive accuracy of doubly-censored
data has not yet been proposed. Recently, Chen et al. (2012) and Han et al. (2013) proposed the
use of a negative predictive value (NPV) curve for right-censored or interval-censored survival data.
They indicated that the NPV curve can be used to compare predictive accuracies of distinct covariate
sets because it because it can be maximized at the covariate combination set, which is truly related to
event times. We extend their approach towards doubly-censored survival data. One might consider
a simple imputation approach to impute the cancer recurrence time by the mid-point of the interval
and then apply survival techniques for right-censored data. However, this approach produces biased
estimates for the survival function, coverage probabilities, confidence intervals and hazard ratio (Law
and Brookmeyer, 1992; Zhang et al., 2009). Therefore, the simple imputation approach may lead
to a biased NPV curve and also result in an inappropriate predictive accuracy measurement. Several
estimation methods have been proposed to model doubly-censored survival data (e.g., Cai and Cheng,
2004; Komárek et al., 2005; Sun et al., 2004; Yu, 2010). Recently, Han et al. (2014) proposed a flexi-
ble regression approach for modeling doubly-censored survival data. However, there are currently no
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formal methods for model evaluation when building a prognostic model for doubly-censored survival
outcomes.

Our proposed method uses a working model to obtain coefficient estimates for a linear combi-
nation; subsequently, we compute the predictive accuracy for a set of covariates semiparametrically.
Hence, the predictive accuracy of the model can be compared without making specific model assump-
tions. Our simulation studies indicate that the NPV-based approach for doubly-censored survival data
correctly identifies covariate combinations in various simulation settings. As detailed in the next sec-
tion, semiparametric estimation of predictive accuracy provides a simple and flexible approach for
model evaluation related to doubly-censored survival outcomes. The implementation effort is mini-
mal, which is particularly advantageous when considering the relative scarcity of statistical software
for doubly-censored survival settings. The remainder of this article is organized as follows: Section 2
describes the NPV-based model evaluation strategy, Section 3 uses extensive simulation results to il-
lustrate the performance of our method with moderate sample sizes, Section 4 uses the method applied
to the prostate cancer trial data, and Section 5 provides the concluding remarks.

2. A measure of predictive accuracy for doubly-censored data

2.1. Estimating the distribution function of the latency time

For the sake of simple notation, let (L,R] and (P,Q] be intervals of the originating event time U and
the terminating event time V . That is, L and R are two consecutive visit times when the originat-
ing event such as cancer recurrences occurs and P and Q are also two consecutive visit times when
the terminating event occurs. However, if the terminating event does not occur or right censored,
the right end point Q would be ∞ (Sun, 2003). The observed doubly-censored data have the form
{(Li,Ri], (Pi,Qi], Zi; i = 1, . . . , n}, where Zi is the p-dimensional covariate vector of subject i. The aim
of conducting the analysis is to investigate the relationship between latency time (Ti = Vi − Ui) and
the covariates Zi.

In this study, we focus solely on subjects who experience the originating event; those subjects
who do not experience the originating event are excluded from the sample. We also assume that a
larger value of Z is associated with a high risk. Several methods are available in the literature to
estimate the distribution function for the elapsed time Pr(T ≤ t). First, in the seminal paper of De
Gruttola and Lagakos (1989), they considered a nonparametric estimator based on a self-consistency
equation. In contrast, Gómez and Lagakos (1994) proposed a two-step algorithm method to replace
doubly-censored data with two separate sets of interval-censored data to resolve non-unique solutions
due to a local maximum problem. It has been known that their method may suffer from a loss of
efficiency. Later, Sun (1997) introduced a conditional likelihood approach to estimate the cumulative
distribution function of T and U. His method handles the truncation issue as well as double censoring.
The conditional likelihood method plays a central role to measure the predictive accuracy and we
briefly explain as follows.

First, assume T and U takes only discrete values. We denote the cumulative distribution and the
corresponding density function of T by F(t) and f (t). In parallel, G(t) and g(t) denote the cumulative
distribution and the density function of U. Suppose the infection time U is truncated on the interval
(A, B] and (A, B] = (0,∞] means doubly censored failure time data. For each patient, the observed
data would be {(Li,Ri], (Pi,Qi], (Ai, Bi]; i = 1, . . . , n}. Possible point mass points for U and T are
denoted by γ0 = 0 < γ1 < · · · < γr and w0 = 0 < w1 < · · · < wm. Then γ0 = 0 < γ1 < · · · < γr would
be the ordered distinct elements of {0, Li, Li + 1, . . . ,Ri; i = 1, . . . , n} and w0 = 0 < w1 < · · · < wm

would be the ordered distinct elements of {0, Pi − Ri, Pi − Ri + 1, . . . ,Qi − Li; i = 1, . . . , n}. Note that
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g j = G(γ j)−G(γ j−1) and fk = F(wk)−F(wk−1). Given Ui ∈ (Li,Ri], the derived conditional likelihood
(LC) is

n∏
i=1

∑Ri
u=Li

g(u)[F(Ui − u) − F(Li − u − 1)]∑Ri
u=Li

g(u)[F(Bi − u) − F(Ai − u − 1)]
. (2.1)

If the f ′s are known, the problem would be reduced to maximize LC with respect to g′s, subject to the
constraint

∑r
j=1 g j = 1 and

∑m
k=1 fk = 1. Let us define an indicator function ψi j of the event γ j ∈ (Li,Ri].

Also let ψ†i j =
∑Qi−γ j

u=Pi−γ j
fu if γ j ∈ (Li,Ri] or ψ†i j = 1, otherwise. With respect to the truncation interval,

let φi j =
∑Bi−γ j

u=Ai−γ j
fu if γ j ∈ (Li,Ri] or φi j=1, otherwise. Then the LC is

n∏
i=1

∑r
j=1 g jψi jψ

†
i j∑r

j=1 g jψi jφi j
. (2.2)

Here, the LC is a function of the {g j} and can be similarly written as a function of the { fk}. Based
on two self-consistency equations, the conditional likelihood method attains superior efficiency to
estimate G and F (Sun, 1997).

2.2. Semiparametric evaluation of the predictive accuracy

Suppose Z is a p-dimensional covariate vector and βT Z is a linear combination of Z under a regression
model. We assume a semiparametric linear transformation model which means that the conditional
survival function given Z, Pr(T > t|Z) = g(t, βT Z) where g(t, βT Z) is a strictly decreasing and differ-
entiable function for βT Z for all t > 0. For a pre-chosen fixed time t, Han et al. (2014) defined a
time-dependent negative predictive function NPV(t, ν) as

NPVZ,β(t, ν) = Pr
{
T > t|FβT Z

(
βT z

)
≤ ν

}
, (2.3)

where β and FβT Z represent regression coefficient effects and the cumulative distribution function of
βT Z, respectively. Similarly, a time-dependent positive predictive function PPV(t, ν) can be defined
as

PPVZ,β(t, ν) = Pr
{
T < t|FβT Z

(
βT z

)
> ν

}
. (2.4)

One can easily show PPV(t, ν) is a monotone increasing function of NPV(t, ν) for the fixed values of
t and ν (0 ≤ ν ≤ 1). Han et al. (2014) and Chen et al. (2012) showed that the NPV function achieves
its maximum at the true linear combination of covariates; therefore, the maximization is established
uniformly for all values of t and ν among possible combinations of covariates. The predictive accuracy
of different covariate combinations can also be compared. In certain analyses, one may be interested
in overall predictive accuracy regardless of the pre-chosen time t. Following Han et al. (2014), an
area under the NPV curve and an integrated summary measure can be derived as

NAUCβ(t) =
∫ 1

0
NPVZ,β(t, ν)dν (2.5)

and

Iβ(τ) =
∫ τ

0
NAUCβ(t) × w(t)dt, (2.6)
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where w(t) is a certain weight function. If w(t)=1, then Iβ(τ) is an average of NAUCβ(t) over [0, τ].
Here τ can be chosen as a maximum event time support. The natural estimator of NPVZ,β(t, ν) for
doubly-censored data is

N̂PVZ,β̂(t, ν) = P̂r
{
T > t|Fn

(
β̂T z

)
≤ ν

}
, (2.7)

where β̂ is an estimated regression coefficient vector.
In (2.7), N̂PVZ,β̂(t, ν) is a nonparametric maximum likelihood estimate (NPMLE) of the marginal

elapsed time function in the subgroup with Fn(β̂T z) ≤ ν, where Fn(·) is the estimated cumulative
distribution (Sun, 1997). Even if a truncation is not present, it does not affect the estimation of the
marginal elapsed time function f although the LC is different from the full likelihood. There are
several ways to estimate β; however, we subsequently use a method proposed by Han et al. (2013),
which flexibly accommodates various survival models for doubly-censored data. The NPMLE based
on the conditional likelihood method is consistent; therefore, Iβ(τ) and NAUCβ(t) are also consistently
estimated by substituting N̂PVZ,β̂(t, ν) based on the continuous mapping theorem.

3. Simulation studies

Simulation studies were devised to evaluate the performance of the proposed method. When conduct-
ing these studies, numerical data are first generated within two different frameworks: a proportional
hazards (PH) model (λ(t|Z) = λ0(t) exp{βT Z}) and a log-linear (LL) model (log T = βT Z +W). Under
each framework, samples with sizes n = 50, 100, 200, and 500 are considered, and a latency time T
is generated based on covariates Z = (Z1,Z2,Z3,Z4). Covariates of Z1, Z2, Z3, and Z4 are generated
independently: Z1 ∼ N(1, 0.5), Z2 ∼ Bernoulli(0.5), Z3 ∼ Unif(0, 2) (PH) or Z3 ∼ Unif(−2, 0) (LL),
and Z4 ∼ N(2, 0.5) (PH) or Z4 ∼ Unif{1, 2, 3, 4} (LL). Vectors of regression parameters are fixed as
β = (−1,−1,−1,−1) (PH) or (0.5, 0.5, 0.5, 0.5) (LL). We also assume that λ0(t) = t and exp(W) fol-
lows the Gompertz(1, 1) distribution. After generating the originating event time U from a PH or LL
model, the terminating event time V is created by adding T and U. The originating and terminating
event times are interval-censored between two consecutive visits. A possible inter-visit time process
is drawn from a uniform Unif(1, 4) distribution. The average widths of the censored intervals were
3.27 and the resulting terminating event times were subject to around 10% random-right censoring.

We compare five different regression models: (M1) T ∼ Z1 +Z2 +Z3 +Z4, (M2) T ∼ Z1 +Z2 +Z3,
(M3) T ∼ Z1 + Z2, (M4) T ∼ Z1 + Z4 + X2 + X3, and (M5) T ∼ Z1 + Z2 + Z3 + Z4 + X1. The first
model is the correct model, whereas important prognostic factors are ignored in the second and third
models. In the fourth and fifth models, we generate and include the noise variables X1 ∼ Unif(−2,−1),
X2 ∼ N(2, 0.5), and X3 ∼ N(−2, 1). To estimate NPV, NAUC(t), and I(τ), we need a β estimate; for
this, we use a regression method proposed by Han et al. (2013). To ensure that the time points for
N̂AUCβ(t) and τ are fixed across simulation-runs, we generate 100,000 event times and select the first
(t1), second (t2), and third (t3) quartiles for N̂AUCβ̂(t) and its maximum for Îβ̂(τ). Tables 1 and 2 show
simulation results based on 1,000 simulation-runs for the PH and LL models, respectively.

Based on the simulation results, the correct model, M1, produces the highest N̂AUCβ̂(t) and Îβ̂(τ)
values compared to those from M2, M3 and M4. However, M5 provides similar results to M1. There-
fore, M5, a model that includes noise variables, apparently continues to have good predictive ability.
Similar simulation results have previously been reported, for example, by Steyerberg et al. (2001)
and Steyerberg (2009). In summary, the omission of a true predictor from a model appears to severely
impact its predictive ability compared to a model that includes noise. Additionally, the inclusion of
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Table 1: In the proportional hazards model, estimates for NAUC(t) and I(τ = 145) values are compared for
n = 50, 100, 200, and 500

n t M1 M2 M3 M4 M5

50

t1 0.804 0.787 0.762 0.773 0.804
t2 0.659 0.625 0.586 0.598 0.652
t3 0.429 0.398 0.359 0.369 0.424

Îβ̂(τ) 18.287 17.458 16.400 16.648 18.121

100

t1 0.812 0.784 0.759 0.767 0.801
t2 0.649 0.626 0.587 0.591 0.651
t3 0.418 0.395 0.354 0.360 0.419

Îβ̂(τ) 17.983 17.263 16.191 16.385 17.937

200

t1 0.795 0.784 0.762 0.763 0.796
t2 0.647 0.625 0.589 0.589 0.648
t3 0.418 0.396 0.358 0.359 0.418

Îβ̂(τ) 18.291 17.479 16.464 16.524 18.108

500

t1 0.796 0.783 0.762 0.763 0.796
t2 0.648 0.625 0.590 0.588 0.648
t3 0.422 0.399 0.362 0.361 0.422

Îβ̂(τ) 8.275 17.548 16.536 16.554 18.180

Three time points (t) and τ are selected at the first, second, and third quartiles and at a maximum follow-up time based on
100,000 event times. Results are based on 1,000 simulations.

Table 2: In the log-linear model, estimates for NAUC(t) and I(τ = 54) values are compared for n = 50, 100, 200,
and 500

n t M1 M2 M3 M4 M5

50

t1 0.878 0.867 0.861 0.874 0.879
t2 0.687 0.634 0.606 0.656 0.672
t3 0.305 0.261 0.236 0.275 0.300

Îβ̂(τ) 4.778 4.384 4.055 4.443 4.728

100

t1 0.876 0.870 0.868 0.874 0.877
t2 0.679 0.634 0.618 0.665 0.681
t3 0.298 0.243 0.222 0.274 0.297

Îβ̂(τ) 4.788 4.144 3.930 4.362 4.583

200

t1 0.872 0.869 0.864 0.870 0.873
t2 0.679 0.634 0.618 0.662 0.680
t3 0.312 0.254 0.234 0.287 0.312

Îβ̂(τ) 4.784 4.241 4.037 4.474 4.681

500

t1 0.872 0.868 0.864 0.870 0.872
t2 0.677 0.637 0.620 0.664 0.677
t3 0.316 0.255 0.236 0.292 0.317

Îβ̂(τ) 4.726 4.183 3.994 4.418 4.626

Three time points (t) and τ are selected at the first, second, and third quartiles and at a maximum follow-up time based on
100,000 event times. Results are based on 1,000 simulations.

noise variables has a small effect on the accuracy of the model.

4. The randomized phase II prostate cancer trial example

Attia et al. (2008) developed a database of 67 prostate cancer patients with data collected from Oc-
tober 2002 to July 2005. In this dataset, the time-to-cancer progression and the time-to-death were
recorded, along with covariates of the treatment arms (docetaxel with doxercalciferol vs. docetaxel
only), baseline values for PSA levels, the Eastern Cooperative Oncology Group (ECOG) performance
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Figure 2: Prostate cancer trial example: assessing the proportional hazards assumption. Transformed survival
curves vs. time in months are shown. DCT = docetaxel; DOX = doxercalciferol; PSA = prostate-specific antigen;
PERF = ECOG performance status; ALK = alkaline phosphatase; LDH = lactate dehydrogenase; HEMO. =

hemoglobin.

status, age, hemoglobin levels, Gleason scores, and levels of lactate dehydrogenase and alkaline phos-
phatase. This study was designed to compare PSA responses between the two treatment arms in
prostate cancer patients. As secondary endpoints, disease-free survival (DFS) and overall survival
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Table 3: Prostate cancer trial example: NAUCβ(t) and Iβ(τ) are estimated for τ = 40 months for each covariate

Variable N̂AUCβ̂(t) Îβ̂(τ)
12 24 30

ARM 0.160 0.113 0.000 6.997
PSA 0.160 0.144 0.085 8.110
PERF 0.139 0.117 0.103 7.173
ALK 0.266 0.243 0.138 10.604
LDH 0.231 0.141 0.133 10.163
GLEASON 0.141 0.092 0.056 7.274
HEMO 0.243 0.205 0.137 10.551

Abbreviations are defined in Figure 2.

Table 4: Prostate cancer trial example: NAUCβ(t) and Iβ(τ) are estimated for several models

Model N̂AUCβ̂(t) Îβ̂(τ)
12 24 30

ALK+HEMO 0.272 0.234 0.143 11.066
ALK+HEMO+LDH 0.284 0.248 0.177 11.304
ALK+HEMO+LDH+PSA 0.251 0.224 0.161 10.936
ALK+HEMO+LDH+PSA+GLEASON 0.217 0.195 0.135 9.986
ALK+HEMO+LDH+PSA+GLEASON+PERF 0.184 0.166 0.126 8.906
ALK+HEMO+LDH+PSA+GLEASON+PERF+ARM 0.179 0.142 0.076 8.429

Abbreviations are defined in Figure 2.

(OS) times were of interest, and Attia et al. (2008) performed two analyses for DFS and OS times.
We use this dataset to identify risk factors related to mortality after cancer progression. In their study,
Attia et al. (2008) measured disease progression by serial PSA scores; therefore, progression was
regarded as occurring between the last progression-free visit and the first progression detection visit.
Thus, we can see that time-to-cancer progression is interval-censored. Additionally, survival after the
cancer progression is either right-censored or interval-censored.

Figure 2 illustrates the estimated survival probability according to covariate levels that use the
conditional likelihood method of Sun (1997). The cut-off values for the continuous covariates were
the median values. Results suggested that the added doxercalciferol does not alter the survival rate
after cancer progression. In addition, baseline PSA and the Gleason score were not associated with
survivorship after the progression. However, high lactate dehydrogenase and alkaline phosphatase
levels or low hemoglobin levels were associated with an increased risk of mortality after the cancer
progressed. Table 3 shows the estimated NAUCβ(t) and Iβ(τ) for each covariate, with NAUC measured
at 12, 24, and 30 months and the maximum follow-up time τ = 40. The coefficient β is estimated
under the proportional hazards model assumption, which is a reasonable assumption because the
survival curves are parallel (Figure 2). Alkaline phosphatase produced the highest N̂AUCβ̂(t) and
Îβ̂(τ), and hemoglobin and lactate dehydrogenase were important prognostic factors. After ranking
the prognostic factors by Îβ̂(τ), we also considered possible covariate combinations and obtained the

N̂AUCβ̂(t) and Îβ̂(τ). Table 4 shows that the combination of alkaline phosphatase, hemoglobin, and
lactate dehydrogenase levels provides the best predictive ability for survivorship following cancer
progression. It also appears that adding more covariates does not increase the power of this predictive
ability.

We also fit a multivariable regression model with the three selected covariates (Table 5). High
lactate dehydrogenase and alkaline phosphatase levels or low hemoglobin levels appeare to increase
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Table 5: Prostate cancer trial example: NAUCβ(t) and Iβ(τ) are estimated

Covariate COEF HR 95% CI p-valueLB UB
ALK 0.332 1.394 0.776 2.501 0.266

HEMO −0.187 0.829 0.613 1.122 0.225
LDH 0.208 1.231 0.506 2.995 0.647

COEF= estimated regression coefficient; HR= hazards ratio; LB= lower bound; UB= upper bound; all other abbreviations
are defined in Figure 2.

the mortality risk after cancer progression; however, the result was not statistically significant for any
variable. This might be because there is a lack of statistical power for the three variables in the doubly-
censored data setting. However, even variables with a lack of statistical power could be selected if
covariates are selected in terms of their proposed predictive accuracy. In conclusion, we found that
the proposed method can be used to assess whether or not important predictive covariates are included
in the model.

5. Discussion

In the last 5 years, over 20,000 papers have been published in the biomedical literature that include
the terms ‘prediction model’ or ‘nomogram’ (PubMed search: May 28, 2015). This level of research
perhaps exists because building a reliable prediction model is thought to be imperative for individual-
ized medicine (i.e., ‘from pre-womb to tomb’). When building such a model, predictor selection is a
primary task. It is not reasonable to exclude predictors with p-values higher than the marginal value
of 5% because prediction is about estimation rather than hypothesis testing. Methods based on ROC
curves have been widely used in biomedical studies to evaluate predictors or markers.

In this study, we introduced a semiparametric method to measure predictive accuracy for doubly-
censored survival data. NPV-based NAUC(t) and I(τ) values provide a useful framework to evaluate
the prognostic and diagnostic power of prediction rules. Such a framework makes very few assump-
tions and requires only regression coefficient estimates based on a working model. The proposed
method compares predictive accuracy measurements for several candidate models; however, it would
also be necessary to consider additional aspects of the models, such as discrimination capabilities,
calibration, and clinical usefulness, before selecting a final model.

The proposed method can be extended to the left truncated and doubly censored survival data be-
cause the conditional likelihood method produces the estimate of the cumulative distribution function
for the latency time T under the left truncation and doubly censoring setting. Zheng et al. (2008)
measured the predictive value based on the PPV for the right censored survival data. To estimate the
PPV, they proposed two methods which are a nonparametric approach and a semiparametric approach.
While the semiparametric approach uses the Cox proportional hazards regression model, a cumula-
tive baseline hazard function needs to be estimated. The cumulative baseline hazard function can be
estimated based on the Breslow estimator for right censored survival data. However, it is a hard task
for the doubly-censored data because of the censoring structure and may require a Bayesian MCMC
approach which can be employed for the NPV and the subsequent quantities.

Our goal is to build parsimonious but trustworthy prediction models. In general, building a pre-
diction model depends on a large data size (for example, over 300). In that case, the small number
of observation due to the sub-grouping may not be a serious problem. In fact, our proposed method
works well under the small to moderate sample sizes in our extensive simulation studies. However,
we would not like to recommend the usage of the proposed method under the sample size less than
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20 as one of the reviewers pointed it out. Another advantage of the proposed method is that we do
not use the proportionality assumption compared to Zheng et al. (2008). To allow users to implement
the proposed model evaluation for doubly-censored survival outcomes, the required R program can
be found at http://hanseungbong.wordpress.com/.
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