• Title/Summary/Keyword: Predictive current control

Search Result 205, Processing Time 0.03 seconds

Static Output Feedback Model Predictive Control for Wiener Models with Polytopic Uncertainty Descriptions

  • Kim, Sun-Jang;Lee, Sang-Moon;Kim, Sang-Un;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1435-1437
    • /
    • 2003
  • In this paper, we proposed static output feedback model predictive control for Wiener models. We adopted polytopic uncertainty description of Wiener Model Predictive Control (WMPC) algorithms for considering output nonlinearities. Robust stability conditions have been presented under which the closed loop stability of static output feedback MPC is guaranteed. The proposed control law is determined from the static output feedback WMPC based on the current estimated state with explicit satisfaction of input constraints.

  • PDF

A Simple Resonant Link Inverter for a Discrete-Time Current Control (이산 전류 제어를 위한 공진형 인버터)

  • 오인환;정영석;주형길;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.36-45
    • /
    • 1998
  • A simple source voltage clamped resonant link (SVCRL) inverter is proposed to clamp the DC link voltage to the input source voltage and reduce the current rating of resonant inductor. The current control of a permanent magnet synchronous motor (PMSM) using a predictive current control technique (PCCT) employing the SVCRL inverter is also investigated to overcome the disadvantage of the current regulated delta modulation (CRDM) control technique. By using the PCCT based on the discrete model of a PMSM and estimation of back EMF, the minimized current ripple with small number of switchings can be obtained. Finally, the comparative computer simulation and experimental results are given to show the usefulness of the proposed technique.

Predictive current control for fast response of generator excitation system (발전기 여자 시스템 속응성 개선을 위한 예측제어 전류 기법)

  • Lee, B.K.;Moon, S.P.;Choi, J.H.;Rhew, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.416-418
    • /
    • 1997
  • Stable power source and fast control response are important for the generator excitation system. To stabilize the control of excitation circuit the PI controller for excitation current has been used. But the response of the system with this conventional control technique is very poor, especially in transient response with a predictive current control, the response of the excitation system can be improved. In this study, it is verified by the PSIM simulation.

  • PDF

Compensation of Network Delay Using Predictive Controller (예측제어기를 이용한 네트워크 시간지연 보상)

  • 허화라;박재한이장명
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.243-246
    • /
    • 1998
  • A predictive controller is designed based upon stochastic methods for compensation of network time delay which caused by the spatial separation between controllers and actuators. Current commands are generated by using time varying probability functions which can be defined according to the values of previous control inputs and actual outputs. To demonstrate the effect of this control methodology, simulation experiments are performed. The results show that even an unstabilized system by a long time delay can be stabilized with this predictive controller.

  • PDF

Design of a Nuclear Reactor Controller Using a Model Predictive Control Method

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Sun-Mi;Lee, Yoon-Joon;Jang, Jin-Wook;Lee, Ki-Bog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2080-2094
    • /
    • 2004
  • A model predictive controller is designed to control thermal power in a nuclear reactor. The basic concept of the model predictive control is to solve an optimization problem for finite future time steps at current time, to implement only the first optimal control input among the solved control inputs, and to repeat the procedure at each subsequent instant. A controller design model used for designing the model predictive controller is estimated every time step by applying a recursive parameter estimation algorithm. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), was used to verify the proposed controller for a nuclear reactor. It was known that the nuclear power controlled by the proposed controller well tracks the desired power level and the desired axial power distribution.

Velocity Control of Permanent Magnet Synchronous Motors using Model Predictive and Sliding Mode Cascade Controller (슬라이딩 모드 및 모델 예측 직렬형 제어기를 이용한 영구자석형 동기전동기의 속도제어)

  • Lee, Ilro;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.801-806
    • /
    • 2015
  • In this paper, we propose cascade-form velocity controller for a permanent magnet synchronous motor (PMSM). The proposed controller consists of a sliding-mode controller (SMC) for the inner current control loop and a model-predictive controller (MPC) for the outer velocity control loop. With SMC, we can ensure that the current tracking error always converges to zero in finite time. The SMC is designed to track the desired currents. Additionally, with MPC, we can obtain the optimal velocity control input which minimizes the cost function. Constraint conditions for input and input variation are included in the MPC design. The simulation results are included to validate the performance of the proposed controller.

Adaptive Predictive Control technique for QSRC (QSRC를 위한 적응예측형 제어 기법)

  • Lee, Jun-Young;Moon, Gun-Woo;Kim, Kyeong-Hwa;Youn, Myung-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.391-393
    • /
    • 1995
  • An improved predictive control technique using adaptive load estimation is proposed. The conventional predictive control technique has not concerned load variations and system parameters. Thus control performances are undesirable such as large current ripples and offset. In this paper the proposed controller employing a simple adaptive algorithm to estimate load is expected to be useful to overcome the problems of conventinal predictive controller.

  • PDF

A Model Predictive Control Method of a Cascaded Flying Capacitor Multi-level Rectifier for Solid State Transformer for DC Distribution System (DC 배전용 반도체 변압기를 위한 직렬 연결된 플라잉 커패시터 멀티-레벨 정류기의 모델 예측 제어 방법)

  • Kim, Si-Hwan;Jang, Yeong-Hyeok;Kim, June-Sung;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.359-365
    • /
    • 2018
  • This study introduces a model predictive control method for controlling a cascaded flying capacitor multilevel rectifier used as an AC-DC rectifier of a solid-state transformer for DC distribution systems. The proposed method reduces the number of states that need to be considered in model predictive control by separately controlling input current, output DC link voltage, and flying capacitor voltage. Thus, calculation time is shortened to facilitate the level expansion of the cascaded flying capacitor multilevel rectifier. The selection of weighting factors did not present difficulties because the weighting factors in the cost function of the conventional model predictive control are not used. The effectiveness of the proposed method is verified through computer simulation using powersim and experiment.

Fault-Tolerant Control for 5L-HNPC Inverter-Fed Induction Motor Drives with Finite Control Set Model Predictive Control Based on Hierarchical Optimization

  • Li, Chunjie;Wang, Guifeng;Li, Fei;Li, Hongmei;Xia, Zhenglong;Liu, Zhan
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.989-999
    • /
    • 2019
  • This paper proposes a fault-tolerant control strategy with finite control set model predictive control (FCS-MPC) based on hierarchical optimization for five-level H-bridge neutral-point-clamped (5L-HNPC) inverter-fed induction motor drives. Fault-tolerant operation is analyzed, and the fault-tolerant control algorithm is improved. Adopting FCS-MPC based on hierarchical optimization, where the voltage is used as the controlled objective, called model predictive voltage control (MPVC), the postfault controller is simplified as a two layer control. The first layer is the voltage jump limit, and the second layer is the voltage following control, which adopts the optimal control strategy to ensure the current following performance and uniqueness of the optimal solution. Finally, simulation and experimental results verify that 5L-HNPC inverter-fed induction motor drives have strong fault tolerant capability and that the FCS-MPVC based on hierarchical optimization is feasible.

Modeling and Improved Predictive Current Control for Buck-Boost Series Resonant Inverter

  • Moon, Gun-Woo;Lee, Jung-Hoon;Baik, In-Cheol;Kim, Kyeong-Hwa;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 1996
  • An improved predictive current control technique for a zero current switched(ZCS) buck-boost series resonant inverter(SRI) is proposed to overcome the inherent disadvantages such as the uncontrollable large overshoot and the large current ripple. Using the proposed technique, four quadrant operations of the output voltage and current for an uninterrutible power supply(URS) application are guaranteed and the buck-boost operation can also be obtained without an additional bidirectional switch.

  • PDF