• Title/Summary/Keyword: Predictive Control

Search Result 1,063, Processing Time 0.035 seconds

Wavelet Neural Network Based Generalized Predictive Control of Chaotic Systems Using EKF Training Algorithm

  • Kim, Kyung-Ju;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2521-2525
    • /
    • 2005
  • In this paper, we presented a predictive control technique, which is based on wavelet neural network (WNN), for the control of chaotic systems whose precise mathematical models are not available. The WNN is motivated by both the multilayer feedforward neural network definition and wavelet decomposition. The wavelet theory improves the convergence of neural network. In order to design predictive controller effectively, the WNN is used as the predictor whose parameters are tuned by error between the output of actual plant and the output of WNN. Also the training method for the finding a good WNN model is the Extended Kalman algorithm which updates network parameters to converge to the reference signal during a few iterations. The benefit of EKF training method is that the WNN model can have better accuracy for the unknown plant. Finally, through computer simulations, we confirmed the performance of the proposed control method.

  • PDF

Receding horizon predictive controls and generalized predictive controls with their equivalance and stability

  • Kwon, Wook-Hyun;Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.49-55
    • /
    • 1992
  • In this paper, we developed a Receding Horizon Predictive Control for Stochastic state space models(RHPCS). RHPCS was designed to minimize a quadratic cost function. RHPCS consists of Receding Horizon Tracking Control(RHTC) and a state observer. It was shown that RHPCS is equivalent to Generalized Predictive Control(GPC) when the underlying state space model is equivalent to the I/O model used in the design of GPC. The equivalence between GPC and RHPCS was shown through. the comparison of the transfer functions of the two controllers. RHPCS provides a time-invarient optimal control law for systems for which GPC can not be used. The stability properties of RHPCS was derived. From the GPC's equivalence to RHPCS, the stability properties of GPC were shown to be the same as those for RHTC.

  • PDF

Temperature control of a batch PMMA polymerization reactor using adaptive predictive control algorithm

  • Huh, Yun-Jun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.51-55
    • /
    • 1995
  • An adaptive unified predictive control (UPC) algorithm is applied to a batch polymerization reactor for poly(methyl methancrylate) (PMMA) and the effects of controller parameters are investigated. Computational studies are performed for a batch polymerization system model developed in this study. A transfer function in parametric form is estimated by recursive least squares (RLS) method, and the UPC algorithm is implemented to control the reactor temperature on the basis of this transfer function. The adaptive unified predictive controller shows a better performance than the PID controller for tracking set point changes, especially in the latter part of reaction course when gel effect becomes significant. Various performance can be acquired by selecting adequate values for parameters of the adaptive unified predictive controller; in other words, the optimal set of parameters exists for a given set of reaction conditions and control objective.

  • PDF

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

Fuzzy Neural Network Based Generalized Predictive Control of Chaotic Nonlinear Systems (혼돈 비선형 시스템의 퍼지 신경 회로망 기반 일반형 예측 제어)

  • Park, Jong-Tae;Park, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2004
  • This paper presents a generalized predictive control method based on a fuzzy neural network(FNN) model, which uses the on-line multi-step prediction, fur the intelligent control of chaotic nonlinear systems whose mathematical models are unknown. In our design method, the parameters of both predictor and controller are tuned by a simple gradient descent scheme, and the weight parameters of FNN are determined adaptively during the operation of the system. In order to design a generalized predictive controller effectively, this paper describes computing procedure for each of the two important parameters. Also, we introduce a projection matrix to determine the control input, which deceases the control performance function very rapidly. Finally, in order to evaluate the performance of our controller, the proposed method is applied to the Doffing and Henon systems, which are two representative continuous-time and discrete-time chaotic nonlinear systems, res reactively.

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

A Pressurized Water Reactor Power Controller Using Model Predictive Control Optimized by a Genetic Algorithm (유전자 알고리즘에 의해 최적화된 모델예측제어를 이용한 PWR 출력제어기)

  • Na, Man-Gyun;Hwang, In-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.104-106
    • /
    • 2005
  • In this work, a PWR reactor core dynamics is identified online by a recursive least squares method. Based on this identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to design an automatic controller for thermal power control in PWRs. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired one, and the variation of the control rod positions. Also, the objectives are subject to maximum and minimum control rod positions and maximum control rod speed. Therefore, the genetic algorithm that is appropriate to accomplish multiple objectives is used to optimize the model predictive controller. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), is used to verify the proposed controller for a nuclear reactor. From results of numerical simulation to check the performance of the proposed controller at the 5%/min ramp increase or decrease of a desired load and its 10% step increase or decrease which are design requirements, it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

  • PDF

Distributed Control of DC Servo Motor on LonWorks-IP Virtual Device Network for Predictive and Preventive Maintenance (LonWorks-IP 가상 디바이스 네트워크상에서 예지 및 예방보전을 위한 DC 서보모터의 분산제어)

  • Song, Ki-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.25-32
    • /
    • 2006
  • LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.