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ABSTRACT

In this paper, we developed a Receding Horizon
Predictive  Control ~ for Stochastic state  space
models(RHPCS). RHPCS was designed to minimize a
quadratic cost function. RHPCS consists of Receding
Horizon Tracking Control(RHTC) and a state observer.
It was shown that RHPCS is equivalent to Generalized
Predictive Control(GPC)
space model is equivalent to the 1/0 model used in the

when the underlying state

design of GPC. The equivalence between GPC and
RHPCS was shown through the comparison of the
RHPCS
law for

transfer functions of the two controllers.

provides a time-invarient optimal control
systems for which GPC can not be used. The stability
properties of RHPCS was derived. From the GPC’s
equivalence to RHPCS, the stability properties of GPC

were shown to be the same as those for RHTC.

1. Introduction

There are several control methods[1-6] which
can be classified as predictive controls. Many successful
applications of these methods to industrial processes
have been reported. The GPC suggested by Clarke et.
al.[6] is regarded as a generalization of the Minimum-
Variance(MV)[1] Generalized Minimum-
Variance(GMV) control[2]. GPC has been believed to
stabilize nonminimum-phase and open-loop unstable

and

plants. However, this ability has not yet completely
proven.

There have been many attempts to examine the
stability properties of GPC due to its popularity.
GPC is based on I/O models

and minimizes a finite receding horizon cost function

However the fact that

has been an obstacle in searching for the stability
of GPC.
approaches[7-10] to search for the properties of GPC

properties There have been several
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by relating it with control methods for state space
such as RHTC or LQ(Linear Quadratic)
control.  Clarke et. al.[7,9] discussed the stability
properties of GPC by relating GPC with LQ control

models

for state space models. However they only mentioned
the limit cases in which the cost horizon grows infinitely
or the control weighting decreases to zero. Clarke and
Scattolini[11] suggested a constrained receding horizon
predictive control which guarantees the stability of the
the
GPC algorithm for I/O models has the same solution
as RHTC. In effect they showed that GPC has the same
stability properties with RHTC when the system has no

closed loop system. Kwon et. al.[10] showed that

disturbances.
Since the works[7,9,10]
without disturbances, they could compare GPC with

discussed the system

state feedback controllers such as LQ control or RHTC
under the assumption that the exact state was available.
However, for systems with disturbances, a form of a
state estimator must be employed, which makes the
comparison more difficult.

Based on the fact that GPC is designed to
mininized the same cost function as LQG, Bitmead er.
al[12] claimed that GPC is egivalent to a receding
LQG. However, they did not
equivalence between GPC and LQG directly.

horizon show the
In this paper, we derive Receding Horizon
models(RHPCS)
minimizing a quadratic cost function which is somewhat

Predictive Control for Stochastic
different from that of LQG. The cost function containes

the discrepancy between reference sequence and
RHPCS has some

variations according to how to make the prediction of

predicted future output sequence.

future output sequence. It will be shown that RHPCS
as GPC when the
predicted future output sequence is made from a steady

has the same transfer function



state kalman filter. RHPCS pfovides a stable predictive
control method for a stochastic system for which GPC
can not be used.

In order to derive RHPCS, an one-shot solution
for stochastic state space models will be derived first.
The derived one-shot solution for stochastic state space
models will be denoted by GPC/SM. RHPCS can be
obtained from GPC/SM using the results of Kwon er
RHPCS consists of RHTC and a state
observer. In this paper, we will call the GPC solution
for stochastic 1/O models(Clarke er al. 1987) as
GPC/IM 1o clearly distinguish it from GPC/SM.

In Section 2, we state

al.(to appear).

the problem and in
Section 3, we develop GPC/SM and RHPCS. The
equivalence between GPC/IM and RHPCS is proved in
GPC/IM  are
discussed through the equivalence between GPC/IM
and RHPCS in Section 5.

Section 4.  Stability properties of

2. Problem statement

We consider a linear system given in the

following stochastic state space model:

X(t+1) = Ax(t) +BAU(t) +DE (E) 5

y(t) = Hx(t) +&,(t)
where  &,(t) and &,(t) are zero-mean, white
noise sequences with variances given by:
E (t) Ty T
t T E t T -
£,(t) (E(8) () N) 12 r,

and x(t), au(t), and y(t) are vectors of order n, m, and

I respectively. The matrix A is assumed to be
nonsingular.

When the system (2.1) is a single input single
E1 (t) "Ez(t)
D and H are given as:

output system, and the matrices A, B,

-4, 10 - -0 b, Ccy-ay
-4, 010 - 0
A= B = D =
0
1
-a, 0 0 br\ Chma,
H=[10:- - - 0], (2.2)
System (2.1) s equivalent to the tollowing
CARIMA(Controlled AutoRegressive Integrated

Moving Average) model:
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a, (g™ A y(t) = b(g ) Au(e) + clg™ME (t
alg™) aay(gha - lra;q-t+-+a,gn, a,#o
b(g?) = blq'1+b2g‘2+~~'+bng‘”

-1 _ B (2.3)
(@) = 1o gl+ s, gn

where q' is the unit delay operator, a is the
differencing operator 1-q'.

GPC/IM was designed for the CARIMA model
of Equation (2.3)[6]. The cost function to be minimized

187

N
T = Y {9 (tri/t) -y (£ ) 1T (P (t+G/E)
et (2.4)

“Ye(E+7) 1+AAuT (E+F-1) Au(t+j-1))

where the reference sequence [y(t+)),j=1,2,...,N]

are supposed to be available at time t and

yle+3/t) is the expected value of y(t+j),
conditioned on the measured output sequence up to
u(t), u(t+1y, ...,
u(t+N-1) are determined from the data available up to
time t at each sample instance t. After obtaining the
optimal control sequences u(t), u(t+1),...,u(t+N-1) pnly

the first element u(t) is applied at time t, and at the

time t. The future control sequences

next time t+1, the overall procedure is repeated.

Our aim is to derive RHPCS which takes the
same strategy as GPC for the state space model (2.1),
and to show the equivalence between the steady state
RHPCS and GPC/IM when system (2.1) is equivalent
to the CARIMA model (2.3). Utilizing the equivalence
between GPC/IM and RHPCS, we will investigate the
stability properties and internal structures of GPC/IM.

3. Development of GPC/SM and RHPCS

In this section, we will derive an optimal output
feedback control minimizing the cost function (2.4) for
system (2.1), where the matrices A, B, D and H may be
different from Equation (2.2).

Using 2(t+1/t) ,whichisthe expected value

of x(t+1) conditioned on the measured output sequence
up to time t, the expected values of the future outputs
y(t+ijt) , for i=1,2, .., N, can be obtained as

follows:
V{t+1/¢t) = HR(e+1/¢t)

y(t+2/t) - HAR(t+1/¢t) +HBAu(£+1)

(3.1)

N
V(ErN/ ) =HAY R (£+1/ ) + Y HAYIBAu( £+ 5-))
j=2



In the following development, we will use 2(t+1)
instead of X (t+1l/t)

% (t+1) isobtained from the Kalman filter of

the following form:

R(t+1) =AR(t) +BAu(E£) +K* () (y(t) -HR(E))
3.2
X(ty) =E{x(ty)}. ( )
The optimal gain matrix K'(t) is given by[11]:
K*(t)=(AP"(t)H"+DIy,) (HP*(t)H'+T,)1{3.3)

P'(t) satisfies the following recursion:

P*(t+1) =AP*(t)AT+DI\ D" -K*(t)
(3.4)
C[HP*(E)H +T,1K" ()T
with

(3.5)

P*(ty) =P, for some ty<t.

P(t) is the state error covarience, that is:

PT(t) = E{[x(t) -X(£))[x(t) -R(t)17/t}

From Equation (3.2), 2(t+1) is given by:

(3.6)
R(t+1) =A%’ (t) +BAu(t)
where

& (t) =%(t) +A7K*(t) (y(t) -HZ(£)). (3.7)

Combining Equation (3.6) with (3.1), we get:
y(t+1/t) - HAR'(t) +HBAu(t)

y(t+2/t) - HA%R/(t) + HABAu(t) +HBAu(t+1)

(3.8)

N
V(E+N/ &) =HANR! (£) + Y HAYIBAu(t+5-1) .
J=1

From the above relations, the cost function (2.4) can be
rewritten as:

T=(WU+VR(t) -Y,_(£)) T(WU+VR(E) -Y, (£))
+AU(t) TU(t)

where (3.9)
HB 0 0] [ HA
HAB HB o +- - 0 HA?
W e Ve ot
HAN-1B HAN-2B HB HAN
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Au(t)
Au(t+1)
U(t) &
Au(t+N-1)

Y (&) aly, (t+1) y, (£+2) oy (£+N) 1 T,

The control increment vector U(t) which minimizes J
can be obtained from (3.9) as:

UE) = (WTW+AID) "W T(y, (£) -VR'(£)) .

The first m elements of U(t) constitute the current

control input vector as follows:

Aug(t) =Z (Y, (&) -VvR(r)) (3.10)
where
Zg=[1,0-0) (WTW+AI) W7,
The current control u(t) is given by:
ue) =ult-1) +Aug(t). (3.11)

The control (3.10) will be called as ‘GPC solution for
stochastic space state models’ and will be denoted by
GPC/SM.

According to the result of Kwon et. al.[10], the
feedback and feedforward gains of Equation (3.10) can
be obtained from the following recursive equations:

ZsV = [AI+B'F(N)B]'B'"F(N)A
(3.12)
Y, (t) = ~[AI+B'F(N)B] 'B'g,(t+1)
where F(N) is obtained from the discrete time Riccati
equation:

F(i+1l) = ATF(i)A-ATF(i)B[AI+BTF(i)B]

- BTF(1YA+HTH for i>1
(3.13)
F(1) = H'H

and gy(t+1) is obtained from the following recursion:

gu(t+j) =AT{I-F(N-j)B[AI+B'F(N-7)B]'BT}
©g(t+j+l) -Hly (t+3)

gy(t+N) = -H'y (t+N). (3.14)

Thus, Equation (3.10) can be rewritten as:

Aug (t) = -[AT+B'F(N)B] '8’ 3.15)
[F(N)AR' (t) +gy(t+1)]

where £/ (t) is obtained from the state observer



(3.2) and Equation (3.7). Since A is nonsingular,

®/(t) is obtained from *(t) as in Equation

(3.7). We must take note of the fact that the state
feedback gain in Equation (3.15) is equal to that of
RHTC[8] when the cost functions are the same. The
control (3.15) will be called RHPCS since it consists of
RHTC and a Kalman filter of a special formf(i.e.
Equation (3.2) and (3.7)).

In order to sec the equivalence between RHPCS
and GPC/IM in the next section, now we achieve the
steady state RHPCS under the condition that system
(2.1) is equivalent to the CARIMA model (2.3). We
will call GPC/SM and RHPCS with a steady state value
of K'(t) as ‘steady state GPC/SM’ and ‘steady state
RHPCS’ respectively. The steady state value of K'(t)
and P’(t) are given as the following lemma.

Lemma 3.1 If system (2.1) is equivalent to the
CARIMA model (2.3) and the polynomial c(q’) is
exponentially stable, then the steady state solutions of
Equation (3.3) and (3.4) are:
limK*(t) ak =D,

tyr-

1impP*(t) aP=0

ty e

for any P,.
Proof: Omitted

In the next lemma, the convergence properties
of the state observer (3.2) with K'(t)= K =D are
summarized.
Lemma 3.2: If system (2.1) is equivalent to the
CARIMA model (2.3) and the gain matrix K(t) of the

state observer (3.2) is chosen to be equal to D and
t,=0, then:
(1) If «c(q) is exponentially stable, then
lime(t) =0 for all e(0).
[
(i) If e(0)=0, then X (t) = x(t) forallt > 0.
Gi)) If e(q)=1, then X(¢) =x(t) forallt 2 n

where e (t) ax(t) -x%(t)

Proof: Omitted

From Lemma 3.1 and 3.2, we get the steady
state. RHPCS for system (2.1) when system (2.1) is
equivalent to the CARIMA model (2.3) as follows:

Aug(t) = -[A+B'F(N)B] (3.16)
- BT[F(N)AR' (£) +g,(t+1) ]
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where

% (t) =% (t) +A7K"(t) (y(t) -HE(t)) (3.17)

Y

-~ AR(t) +BAu(t) +D(y(t)~-HR(L))
(3.18)

X(t+1)

Rty =E{x(t)}.
The steady state GPC/SM is also given as follows:

Aug(t) =2 (Y, (t) -VR (&) (3.19)

where £/ (t) is obtained from Equation (3.17) and

(3.18). Previous studies[9][10] did not mention the state
observer when the relation between GPC/IM and
RHTC or LQ control was discussed.

In the next section, we will show the equivalence
between the steady state RHPCS given by Equation
(3.16) and GPC/IM. This will make the
structure of GPC/IM clear in terms of the state space

internal
framework.

4. The equivalence between RHPCS and
GPC/IM

In this section we will show the equivalence
between the steady state RHPCS and GPC/IM. Before
showing the equivalence between the steady state
RHPCS and GPC/IM, we will review the GPC/IM
of the GPC/IM
algorithm, a set of optimal output predictors over the

algorithm. In the development

cost horizon N is used. The optimal i-step ahead
prediction, y*(t+1i) , which is equal to
y(t+i/t) , satisfies:

clg )y P (t+i)-P (g ) y(t) (4.1)

+F (g blg™) Ault+l) .

2
Pi(q") and F(q) are the unique polynomials satisfying:
clgh) -~ Filghalg™t) ~gir, (gt
Fi<q71) - :L+fqul+..._‘> i_lg—ifl (4.2)
Pi(gh) = po'+pigtemept g,

Let
Si(g™")y aF (g b(g™) .

Then Si(q') can be divided into two polynomials as
follows[7]:

5i(g™) =8l (gye(g™) +g7T(g7) (4.3)

where  S(q") = F,(g")b(q"). F.(q') satisfies the

following identity:



1=F{(gha(g™") +q P (g™

where F/(q") and P/(q') are polynomials of the same
order with Fi(q') and P(q') respectively. Combining
Equation (4.1) with (4.2), we get:

Pr(t+i) =Sl (g Au(t+i) T, (g 1y BULE)
C(Q”()4.4)
y(t)

+Pi(g™) .
c(@™)

where s/ is the j'th coefficient of the the polynomial
s;(q") associated with q'.

q'. From Equation (4.3), we can see that

n-1
c(g™ [Z S;,i'q”] +T;(g™") is a polynomial of
i
order n-1.

If we use the following notation, :

n-1
c(@ (Y si, gy (g

}A’p‘(t"i)A i-t Au (t)
c(g™ (4.5)
Pi(g!
+‘—T)y(t)
c(g™)
then 9*(t+i) can be written as:

gr(t+i) = (Y sl g ilAu(tei) +p) (t+{$.6)

i
So, the output predictors for the horizon [t+1, t+N]

can be written in a vector notation as:

V(L) = Yp(t£) +5/U(E)

where, the vectors in the above equation are defined as:
P alyt (t+1) pr(t+2) o P+ ] T

Ule)yalAu(t) Au(t+1) - Au{t+N-1)]17T
Ya(e)alys(t+1) yo(t+2) = gp (e+N) ] 7

and the matrix S§" are defined as follows:

s, 0 - -0
‘sz/ s{ o - - 0
S'al .

/ / !

Sy Sy-1 © 7 T S
The optimal control law for /O models,

denoted by au,, is given byf6]:

. (4.7)

Au (t) =~ Z(Y () -Y,(£))

where
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Y (8) - [y, (£+1) y,(£+2) =y, (t+N) ]
Zp = [10 = 0](8'7s/+A1) 18T,

Take note of the fact that the gain matrix Z, is
determined by matrix S’, and it does not depend on the
polynomial ¢(q'). The matrix Y (t) is composed of the
reference sequences on horizon [t+1, t+N].

The control au(t) in (4.7) will be compared with

the control au(t) in (3.23) where £’ (t) is obtained

from the state estimator (3.21) and Equation (3.22).
Since aug(t) in Equation (3.23) can be rewritten as
Equation (3.20), the equivalence between steady state
RHPCS(i.e. (3.20)) and GPC/IM(i.e. (4.6)) will be
proven from the equivalence between Equation (3.23)
and (4.6).

Take note of the fact that both of au(t) and
aug(t) are obtained from the sequences of au(e), y(*)
and y(¢). So, the sequence au(e), y(¢) and y(¢) can be
regarded as inputs to the two controllers to generate
au*) and aug(*). We will show the equivalence
between GPC/IM and the steady state RHPCS by
proving that they have the same transfer functions. We
need the following lemma.

Lemma 4.1.
by Equation (2.2), the following equalities are satisfied:

When the matrices A, B, D, H are given

4 i-1
sj{~z‘j= HAI-'B- z7 (4.8)
i i

i, iz .
JZ_; {si, -z + T‘)) =HA'(I-z'(A-DH))"'B
(4.9)

Pi(g™) N

c(q’1) (4.10)

HA' ' (1-q”" (A-DH))'D

where the equalities mean that the left and right hand

terms of each equations are the same rational functions
of z*.

Proof: Omitted

Utilizing Lemma 4.1, we can show that GPC/IM
has the same transfer function with the steady state
RHPCS as the following theorem.

Theorem 4.1 Consider the systems (2.1) and (2.3).
When the matrices of system (2.1) are given by
Equation (2.2), GPC/IM, Equation (4.7), has the same

transfer function with the steady state RHPCS,



Equation (3.20).

Proof : Omitted

5. Stability properties of GPC

In section 4, we have shown that steady state
RHPCS has the same trapsfer function as GPC/IM
when it is are designed for the same plants. Thus, the
stability properties of GPC/IM are equal to those of
steady state RHPCS.

Let us consider the stability properties of the
steady state RHPCS.

is assumed to be zero as far as stability is concerned.

The reference sequence y(t+i)

Substitution of the control law (3.20) into Equation
(2.1) and utilizing the relation (3.12) yields:

x(t+1) = Ax(t) -BzZ VR (¢t) +DE (t)(.5‘1)
Substitution of

R(t) = x(t) +A1DE(t) -(I-A"DH)e(t)
into (5.1) yields:

x(t+1) = (A-BZV) x(t) ~(I-A"'DH) e(t) (5.2)
+ (D+ATIDYE (L) .

Combining (5.2) with (3.2), we obtain

[x(t+1)} A-BZ.V BZ V(AT'DH-I) [[x(¢t)
e(t+1) 0 A-DH e(t)
D+BZ VA™'D
+
0
Consequently, the closed loop characteristic

values comprise the characteristic values of matrix A-
BZ,V(the poles of RHTC)[10] and the characteristic
values of matrix A-DH( the observer poles). These

results are summarized in the following theorem.

Theorem 5.1. When system (2.1) is equivalent to the
CARIMA model (2.3), the stability of the steady state
RHPCS for model (2.1) is the same as that of the
RHTC for model (2.1) without disturbances, provided
that c(q) is exponentially stable.

Proof: The characteristic value of matrix A-DH is c(q).
Since c(q"') is exponentially stable, the stability of the
whole system depends on the stability of matrix A-
BZ V. Q.E.D

In general cases, it is assumed that

c(q’) is
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exponentially stable. Thus, we can say that steady state
RHPCS has the same stability conditions with those of
RHTC. The stability properties of RHTC are described
in detail in the work of Kwon and Byun[8], and a part

of them is summarized here:

:If the pairs {A, B} and {A, H} of system (2.1) are
completely controllable and completely observable

respectively, then there exists a finite cost horizon N”
such that for all N > N, the matrix A-BZV is

exponentially stable.

The pairs {A, B} and {A, H} of system (2.1) are
completely controllable and observable respectively if
and only if the polynomials a(q') and b(q') have no
common modes. The stability properties of GPC/IM is
obtained from the stability properties of the steady state
RHPCS by the following theorem.

Theorem 5.2.1f the polynomial a(q') and b(q') have no
common modes and c(q') is an exponentially stable
polynomial, then there exists a finite number N” such

that for N 2 N7, the closed loop system with GPC/IM

is exponentially stable.

When we design GPC/IM,
matrices to deal with increases as the cost horizon N

the dimension of

becomes larger. However, for RHPCS, the dimension
of matrices to deal with does not depend on the cost
horizon N. This implies that GPC/IM with a large cost
horizon can be replaced by the steady state RHPCS.

6. Conclusions

In this paper, we developed RHPCS for
stochastic state space models and showed that GPC is
equivalent to the steady state RHPCS which consists of
Equation (3.20)-(3.22) when they are applied to the
same plants. The RHPCS consists of a state feedback
controller and a state observer. The observed state
same as RHTC which
minimizes the same cost function as that of GPC. The

feedback controller is the
state observer isa Kalman filter of a special form which
consists of Equation (3.1) and (3.7).

The stability of GPC is completely determined
by that of RHTC and the state observer. The observer
that ¢(@q) is
exponentially stable. The stability of ¢(q") is a common
assumption in the design of GPC. Thus, we can say
that GPC has the same stability conditions with RHTC.

is stable under the assumption



We believe that RHPCS will provide a useful
tool to design or modify GPC since RHPCS contains
GPC as a special case and RHPCS is a state space
model based controller., GPC with an infinite cost
horizon can be obtained from the steady state RHPCS
using the steady state solution of Riccati equation
(3.13).

Utilizing the equivalence GPC and the steady
state RHPCS, a new type of adaptive GPC can also be
derived by applying the well known self-tuning
for LQ controller[14] to RHPCS since

RHPCS takes a similar form with the controller in [14].

techniques

Since there are many studies on the robustness of state
space model based control methods, the robustness of
GPC can be examined
robustness of RHPCS.
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